Skip to main content
Log in

Classification of general absolute planes by quasi-ends

  • Published:
Aequationes mathematicae Aims and scope Submit manuscript

Abstract

General (i.e. including non-continuous and non-Archimedean) absolute planes have been classified in different ways, e.g. by using Lambert–Saccheri quadrangles (cf. Greenberg, J Geom 12/1:45-64, 1979; Hartshorne, Geometry; Euclid and beyond, Springer, Berlin, 2000; Karzel and Marchi, Le Matematiche LXI:27–36, 2006; Rostamzadeh and Taherian, Results Math 63:171–182, 2013) or coordinate systems (cf. Pejas, Math Ann 143:212–235, 1961 and, for planes over Euclidean fields, Greenberg, J Geom 12/1:45-64, 1979). Here we consider the notion of quasi-end, a pencil determined by two lines which neither intersect nor have a common perpendicular (an ideal point of Greenberg, J Geom 12/1:45-64, 1979). The cardinality ω of the quasi-ends which are incident with a line is the same for all lines hence it is an invariant \({\omega_\mathcal{A}}\) of the plane \({\mathcal{A}}\) and can be used to classify absolute planes. We consider the case \({\omega_\mathcal{A}=0}\) and, for \({\omega_\mathcal{A} \geq 2}\) (it cannot be 1) we prove that in the singular case \({\omega_\mathcal{A}}\) must be infinite. Finally we prove that for hyperbolic planes, ends and quasi-ends are the same, so \({\omega_\mathcal{A}=2}\) .

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Bachmann, F.: Aufbau der Geometrie aus dem Spiegelungsbegriff. Springer, Berlin (1959)

  2. Bonenti F., Karzel H., Marchi M.: Absolute planes with elliptic congruence. Mitt. Math. Ges. Hamburg 32, 123–143 (2012)

    MATH  MathSciNet  Google Scholar 

  3. Greenberg, M.J.: On J. Bolyai’s Parallel Construction. J. Geom. 12(1), 45–64 (1979)

  4. Hartshorne R.: Geometry: Euclid and Beyond. Springer, New York (2000)

    Book  Google Scholar 

  5. Hjelmslev J.: Neue Begründung der ebene Geometrie. Math. Ann. 64, 449–474 (1907)

    Article  MATH  MathSciNet  Google Scholar 

  6. Karzel H., Kroll H.J.: Geschichte der Geometrie seit Hilbert. Wissenschaftliche Buchgesellschaft, Darmstadt (1988)

    MATH  Google Scholar 

  7. Karzel H., Marchi M.: Classification of general absolute geometries with Lambert–Saccheri Quadrangles. Le Matematiche LXI, 27–36 (2006)

    MathSciNet  Google Scholar 

  8. Karzel H., Marchi M., Pianta S.: Legendre-like theorems in a general absolute geometry. Results Math. 51, 61–71 (2007)

    Article  MATH  MathSciNet  Google Scholar 

  9. Karzel H., Sörensen K., Windelberg D.: Einführung in die Geometrie. Vandenhoeck, Göttingen (1973)

    MATH  Google Scholar 

  10. Pejas W.: Die Modelle des Hilbertschen Axiomensystems der absoluten Geometrie. Math. Ann. 143, 212–235 (1961)

    Article  MATH  MathSciNet  Google Scholar 

  11. Rostamzadeh M., Taherian S.-Gh.: On Characterization of Absolute Geometries. Results Math. 63, 171–182 (2013)

    Article  MATH  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Silvia Pianta.

Additional information

The author Mahfouz Rostamzadeh was financially supported by German Academic Exchange Service (DAAD) in 2013 fall semester.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Karzel, H., Pianta, S., Rostamzadeh, M. et al. Classification of general absolute planes by quasi-ends. Aequat. Math. 89, 863–872 (2015). https://doi.org/10.1007/s00010-014-0283-5

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00010-014-0283-5

Mathematical Subject Classification

Keywords

Navigation