Skip to main content
Log in

Approximate Roberts orthogonality

  • Published:
Aequationes mathematicae Aims and scope Submit manuscript

Abstract

In a real normed space we introduce two notions of approximate Roberts orthogonality as follows:

$$x \perp_R^\varepsilon y \, {\rm if \, and \, only \, if} \left|\|x + ty\|^2 - \|x - ty\|^2\right| \leq 4\varepsilon\|x\|\|ty\| \, {\rm for \, all} \, t \in \mathbb{R}\,;$$

and

$$x^{\varepsilon} \perp_R y \, {\rm if \, and \, only \, if} \left|\|x + ty\|-\|x - ty\|\right| \leq \varepsilon(\|x + ty\| + \|x - ty\|) \, {\rm for \, all} \, t \in \mathbb{R}\,.$$

We investigate their properties and their relationship with the approximate Birkhoff orthogonality. Moreover, we study the class of linear mappings preserving approximately Roberts orthogonality of type  \({^{\varepsilon}\perp_R}\). A linear mapping \({U: \mathcal{X} \to \mathcal{Y}}\) between real normed spaces is called an \({\varepsilon}\)-isometry if \({(1 - \varphi_1 (\varepsilon))\|x\| \leq \|Ux\| \leq (1 + \varphi_2(\varepsilon))\|x\|\,\,(x \in \mathcal{X})}\), where \({\varphi_1 (\varepsilon)\rightarrow0}\) and \({\varphi_2 (\varepsilon)\rightarrow0}\) as \({\varepsilon\rightarrow 0}\). We show that a scalar multiple of an \({\varepsilon}\)-isometry is an approximately Roberts orthogonality preserving mapping.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Alonso J., Benítez C.: Carlos Orthogonality in normed linear spaces: a survey. II. Relations between main orthogonalities. Extracta Math. 4(3), 121–131 (1989)

    MathSciNet  Google Scholar 

  2. Alonso J., Martini H., Wu S.: On Birkhoff orthogonality and isosceles orthogonality in normed linear spaces. Aequationes Math. 83(1-2), 153–189 (2012)

    Article  MATH  MathSciNet  Google Scholar 

  3. Alsina C., Sikorska J., Tomás M.S.: Norm Derivatives and Characterizations of Inner Product Spaces. World Scientific, Hackensack (2009)

    Book  Google Scholar 

  4. Amir D.: Characterization of Inner Product Spaces. Birhäuser Verlag, Basel (1986)

    Book  Google Scholar 

  5. Birkhoff G.: Orthogonality in linear metric spaces. Duke Math. J. 1, 169–172 (1935)

    Article  MathSciNet  Google Scholar 

  6. Chmieliński, J.: On an \({\varepsilon}\)-Birkhoff orthogonality. J. Inequal. Pure Appl. Math. 6(3), Art. 79 (2005)

  7. Chmieliński J.: Remarks on orthogonality pereserving mappings in normed spaces and some stability problems. Banach J. Math. Anal. 1(1), 117–124 (2007)

    Article  MATH  MathSciNet  Google Scholar 

  8. Chmieliński J.: Orthogonality preserving property and its Ulam stability, Chapter 4. In: Brzdek, J., Rassias Th., M. (eds.) Functional Equations in Mathematical Analysis. Springer Optimization and its Applications, vol. 52, pp. 33–58. Springer, New York (2012)

    Google Scholar 

  9. Chmieliński J., Wójcik P.: Isosceles-orthogonality preserving property and its stability. Nonlinear Anal. 72, 1445–1453 (2010)

    Article  MATH  MathSciNet  Google Scholar 

  10. Chmieliński J., Wójcik P.: On a ρ-orthogonality. Aequationes Math. 80, 45–55 (2010)

    Article  MATH  MathSciNet  Google Scholar 

  11. Dragomir S.S.: On approximation of continuous linear functionals in normed linear spaces. An. Univ. Timişoara Ser. Ştiinţ. Mat. 29, 51–58 (1991)

    MATH  Google Scholar 

  12. James R.C.: Orthogonality in normed linear spaces. Duke Math. J. 12, 291–301 (1945)

    Article  MATH  MathSciNet  Google Scholar 

  13. Maligranda L.: Some remarks on the triangle inequality for norms. Banach J. Math. Anal. 2(2), 31–41 (2008)

    MATH  MathSciNet  Google Scholar 

  14. Miličić P.M.: Sur la G-orthogonalité dans les espéaceésnormés. Math. Vesnik. 39, 325–334 (1987)

    MATH  Google Scholar 

  15. Mirzavaziri M., Moslehian M.S.: Orthogonal constant mappings in isoceles orthogonal spaces. Kragujevac J. Math. 29, 133–140 (2006)

    MATH  MathSciNet  Google Scholar 

  16. Mojškerc B., Turnšek A.: Mappings approximately preserving orthogonality in normed spaces. Nonlinear Anal. 73, 3821–3831 (2010)

    Article  MATH  MathSciNet  Google Scholar 

  17. Moslehian M.S.: On the stability of the orthogonal Pexiderized Cauchy equation. J. Math. Anal. Appl. 318(1), 211–223 (2006)

    Article  MATH  MathSciNet  Google Scholar 

  18. Odell E., Schlumprecht Th.: Asymptotic properties of Banach spaces under renormings. J. Am. Math. Soc. 11(11), 175–188 (1998)

    Article  MATH  MathSciNet  Google Scholar 

  19. Roberts B.D.: On the geometry of abstract vector spaces. Tôhoku Math. J. 39, 42–59 (1934)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mohammad Sal Moslehian.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zamani, A., Moslehian, M.S. Approximate Roberts orthogonality. Aequat. Math. 89, 529–541 (2015). https://doi.org/10.1007/s00010-013-0233-7

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00010-013-0233-7

Mathematics Subject Classification (1991)

Keywords

Navigation