Skip to main content
Log in

The Non-metricity Formulation of General Relativity

  • Published:
Advances in Applied Clifford Algebras Aims and scope Submit manuscript

Abstract

After recalling the differential geometry of non-metric connections in the formalism of differential forms, we introduce the idea of a non-metricity (NM) connection, whose connection 1-forms coincides with the non-metricity 1-forms for a class of cobase fields. Then we formulate a theory of gravitation [(equivalent to General Relativity (GR)] which admits a geometrical interpretation in a flat torsionless space where the gravitational field is completely manifest in the non-metricity of a NM connection. We define and then apply the non-metricity gauge to a gravitational Lagrangian density discovered by Wallner (Acta Phys Austr 54:165–189, 1981) (proved in Appendix A to be equivalent to Einstein–Hilbert). The Einstein equations coupled to the matter currents \(\left( \mathcal {J}_{\alpha }\right) \) thus becomes \(\delta dg_{\alpha }=\mathcal {T}_{\alpha }+\mathcal {J}_{\alpha }\), where \(\left( \mathcal {T}_{\alpha }\right) \) is identified as the gravitational energy-momentum currents, to which we shall find a relatively simple and physically appealing form. It is also shown that in the gravitational analogue of the Lorenz gauge, our field equations can be written as a system of Proca equations, which may be of interest in the study of propagation of gravitational-electromagnetic waves.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Adak, M.: The symmetric teleparallel gravity. Turk. J. Phys. 30, 379–390 (2006). arXiv:gr-qc/0611077

  2. Adak, M., A note on parallel transportation in symmetric teleparallel geometry (2011). arXiv:1102.1878 [physics.gen-ph]

  3. Adak, M., Sert, O.: A solution to symmetric teleparallel gravity. Turk. J. Phys. 29, 1–7 (2005). arXiv:gr-qc/0412007

  4. Adak, M., Sert, O., Kalay, M., Sari, M.: Symmetric teleparallel gravity: some exact solutions and spinor couplings. Int. J. Mod. Phys. A 28 (2013). arXiv:0810.2388 [gr-qc]

  5. Aldrovandi, R., Pereira, J. G.: Teleparallel Gravity. Fundamental Theories of Physics vol. 173, Springer, Heidelberg (2013). An online version may be found at www.ift.unesp.br/users/jpereira/tele. Accessed 29 Dec 2016

  6. Anderson, J.L.: Principles of Relativity Physics. Academic Press, New York (1967)

    Google Scholar 

  7. Baekler, P., Hehl, F.W., Miekle, E.W.: Nonmetricity and torsion: facts and fancies in gauge approaches to gravity. In: Ruffini, R. (ed.) Proceedings of 4th Marcel Grossman Meeting on General Relativity, pp. 277–316. North-Holland, Amsterdam (1986)

    Google Scholar 

  8. Bramson, B.: Do electromagnetic waves harbour gravitational waves? Proc. R. Soc. A 462, 1987–2000 (2006)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  9. Burke, W.L.: Applied Differential Geometry. Cambridge University Press, Cambridge (1985)

    Book  MATH  Google Scholar 

  10. Göckeler, M., Schücker, T.: Differential Geometry. Gauge Theories and Gravity. Cambrigde University Press, Cambridge (1989)

    MATH  Google Scholar 

  11. Hicks, N.J.: Notes on Differential Geometry. Van Nostrand Reinhold Company, Amsterdam (1965)

    MATH  Google Scholar 

  12. Landau, L.D., Lifshitz, E.M.: The Classical Theory of Fields. Butterworth-Heinemann, Oxford (1973)

    MATH  Google Scholar 

  13. Maluf, J.W.: Hamiltonian formulation of the teleparallel description of general relativity. J. Math. Phys. 35, 335–343 (1994)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  14. Mol, I.: Revisiting the Schwarzschild and the Hilbert–Droste solutions of Einstein equation and the maximal extension of the latter (2014). arXiv:1403.2371 [math-ph]

  15. Nester, J.M., Yo, H.-J.: Symmetric teleparallel general relativity. Chin. J. Phys. 37, 113–118 (1999). arXiv:gr-qc/9809049

  16. Notte-Cuello, E.A., da Rocha, R., Rodrigues Jr., W.A.: Some thoughts on geometries and on the nature of the gravitational field. J. Phys. Math. 2, 20–40 (2010). arXiv:0907.2424 [math-ph]

  17. O’Neill, B.: Semi-Riemannian Geometry with Applications to Relativity. Academic Press, New York (1983)

    MATH  Google Scholar 

  18. Rodrigues Jr., W.A.: The nature of gravitational field and its legitimate energy-momentum tensor. Rep. Math. Phys. 69, 275–279 (2011). arXiv:1109.5272 [math-ph]

  19. Rodrigues Jr., W.A., de Souza, Q.A.G.: The Clifford bundle and the nature of the gravitational field. Found. Phys. 23, 1465–1490 (1993)

    Article  ADS  MathSciNet  Google Scholar 

  20. Rodrigues Jr., W.A., de Oliveira, E.C.: The Many Faces of Maxwell, Dirac and Einstein Equations. Lectures Notes Physics vol. 722, Springer, Heidelberg (2007). A preliminary and improved version may be found at http://www.ime.unicamp.br/~walrod/recentes.htm. Accessed 29 Dec 2016

  21. Rodrigues Jr., W.A., Fernández, V.V.: Gravitation as a Plastic Distortion of the Lorentz Vacuum. Fundamental Theories of Physics vol. 168, Springer, Heidelberg (2010). A new version with corrections may be found at http://www.ime.unicamp.br/~walrod/recentes.htm. Accessed 29 Dec 2016

  22. Roy, S.R., Tripaphi, V.N.: On gravitational and electromagnetic waves in general relativity. Gen. Relat. Gravit. 5, 257–274 (1974)

    Article  ADS  Google Scholar 

  23. Sparling, G.A.J.: Twistors. Spinors and the Einstein Vacuum Equations. University of Pittsburgh, Preprint (1982)

  24. Thirring, W.: Classical Mathematical Physics. Springer, New York (1997)

    Book  MATH  Google Scholar 

  25. Thirring, W., Wallner, R.: The use of exterior forms in Einstein’s gravitation theory. Br. J. Phys. 8, 686–723 (1978)

    MATH  Google Scholar 

  26. Vaidya, P.C.: Unified gravitational and electromagnetic waves. Progr. Theor. Phys. 25, 305–314 (1961)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  27. Wallner, R.P.: Notes on Gauge theory and gravitation. Acta Phys. Austr. 54, 165–189 (1981)

    MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Igor Mol.

Additional information

Communicated by Zbigniew Oziewicz

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mol, I. The Non-metricity Formulation of General Relativity. Adv. Appl. Clifford Algebras 27, 2607–2638 (2017). https://doi.org/10.1007/s00006-016-0749-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00006-016-0749-8

Navigation