Skip to main content
Log in

Operator Exponentials for the Clifford Fourier Transform on Multivector Fields in Detail

  • Published:
Advances in Applied Clifford Algebras Aims and scope Submit manuscript

Abstract

In this paper we study Clifford Fourier transforms (CFT) of multivector functions taking values in Clifford’s geometric algebra, hereby using techniques coming from Clifford analysis (the multivariate function theory for the Dirac operator). In these CFTs on multivector signals, the complex unit \({i \in \mathbb{C}}\) is replaced by a multivector square root of −1, which may be a pseudoscalar in the simplest case. For these integral transforms we derive an operator representation expressed as the Hamilton operator of a harmonic oscillator.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Arnaudon A., Bauer M., Frappat L.: On Casimir’s ghost. Commun. Math. Phys. 187, 429–439 (1997)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  2. Brackx, F., Delanghe, R., Sommen, F.: Clifford analysis. In: Research Notes in Mathematics, vol. 6. Pitman, London (1982)

  3. Brackx F., De Schepper H., Eelbode D., Souček V.: The Howe dual pair in Hermitean Clifford analysis. Rev. Mat. Iberoam. 26(No. 2), 449–479 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  4. Brackx, F., Hitzer, E., Sangwine, S.: History of quaternion and Clifford–Fourier transforms and wavelets. In: Hitzer, E., Sangwine, S. (eds.) Quaternion and Clifford–Fourier Transforms and Wavelets, Trends in Mathematics, pp. xi–xxvii, Springer, Berlin (2013)

  5. Constales D., Sommen F., Van Lancker P.: Models for irreducible representations of Spin (m). Adv. Appl. Clifford Algebras 11(No. S1), 271–289 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  6. De Bie H., Xu Y.: On the Clifford–Fourier transform. Int. Math. Res. Notices 2011(22), 5123–5163 (2011)

    MathSciNet  MATH  Google Scholar 

  7. De Bie H., De Schepper N.: The fractional Clifford–Fourier transform. Complex Anal. Oper. Theory 6, 1047–1067 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  8. De Bie H.: The kernel of the radially deformed Fourier transform. Integral Transforms Spec. Funct. 24(12), 1000–1008 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  9. De Bie, H., Orsted, B., Somberg, P., Souček, V.: The Clifford deformation of the Hermite semigroup. SIGMA 9, 010 (2013)

  10. Delanghe, R., Sommen, F., Souček, V.: Clifford Analysis and Spinor Valued Functions. Kluwer, Dordrecht (1992)

  11. Delanghe R.: Clifford analysis: history and perspective. Comput. Methods Funct. Theory 1, 107–153 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  12. Ebling, J., Scheuermann, G.: Clifford convolution and pattern matching on vector fields. In: Proceedings IEEE Visualization, vol. 3, pp. 193–200. IEEE Computer Society, Los Alamitos (2003)

  13. Ebling J., Scheuermann G.: Clifford Fourier transform on vector fields. IEEE Trans. Vis. Comput. Graph. 11(4), 469–479 (2005)

    Article  Google Scholar 

  14. Felsberg, M.: Low-level image processing with the structure multivector. Ph.D. thesis, Christian-Albrechts-Universität, Institut für Informatik und Praktische Mathematik, Kiel (2002)

  15. Gilbert, J., Murray, M.A.M.: Clifford Algebras and Dirac Operators in Harmonic Analysis. Cambridge University Press, Cambridge (1991)

  16. Gürlebeck K., Sprössig, W.: Quaternionic analysis and elliptic boundary value problems. In: ISNM 89. Birkhäuser, Basel (1990)

  17. Hestenes, D., Sobczyk, G.: Clifford Algebra to Geometric Calculus. Kluwer, Dordrecht (1984)

  18. Hitzer, E.: Vector differential calculus. Mem. Fac. Eng. Fukui Univ. 49(2), 283–298 (2001). http://arxiv.org/abs/1306.0116 (preprint)

  19. Hitzer, E.: Multivector differential calculus. Adv. App. Clifford Algebras 12(2), 135–182 (2002). doi:10.1007/BF03161244. arXiv:1306.2278 (preprint)

  20. Hitzer, E.: Creative Peace License. https://gaupdate.wordpress.com/2011/12/14/the-creative-peace-license-14-dec-2011/. Accessed 13 Oct 2015

  21. Hitzer, E., Mawardi, B.: Clifford Fourier transform on multivector fields and uncertainty principles for dimensions n = 2 (mod 4) and n = 3 (mod 4). Adv. App. Clifford Algebras 18(3–4), 715–736 (2008). doi:10.1007/s00006-008-0098-3

  22. Homepage of John Stephen Roy Chisholm. http://www.roychisholm.com/. Accessed 13 Oct 2015

  23. Jancewicz B.: Trivector Fourier transformation and electromagnetic field. J. Math. Phys. 31(8), 1847–1852 (1990)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  24. Mawardi B., Hitzer E.: Clifford Fourier transformation and uncertainty principle for the Clifford geometric algebra \({Cl_{3,0}}\). Adv. App. Clifford Algebras 16(1), 41–61 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  25. Schwabl, F.: Quantenmechanik. Springer, Berlin (1990)

  26. Stein, E.M., Weiss, G.: Introduction to Fourier Analysis on Euclidean Spaces. Princeton University Press, Princeton (1971)

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to David Eelbode.

Additional information

In memoriam of Prof. John Stephen Roy Chisholm, 5 November 1926 (Barnet, Hertfordshire, England) – 10 August 2015 (Kent, England) [22].

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Eelbode, D., Hitzer, E. Operator Exponentials for the Clifford Fourier Transform on Multivector Fields in Detail. Adv. Appl. Clifford Algebras 26, 953–968 (2016). https://doi.org/10.1007/s00006-015-0600-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00006-015-0600-7

Mathematics Subject Classification

Keywords

Navigation