Skip to main content
Log in

Spinor and Twistor Geometry in Einstein Gravity and Finsler Modifications

  • Published:
Advances in Applied Clifford Algebras Aims and scope Submit manuscript

Abstract

We present a generalization of the spinor and twistor geometry for (pseudo) Riemannian manifolds enabled with nonholonomic distributions or for Finsler–Cartan spaces modelled on tangent Lorentz bundles. Nonholonomic (Finsler) twistors are defined as solutions of generalized twistor equations determined by spin connections and frames adapted to nonlinear connection structures. We show that the constructions for local twistors can be globalized using nonholonomic deformations with “auxiliary” metric compatible connections completely determined by the metric structure and/or the Finsler fundamental function. We explain how to perform such an approach in the Einstein gravity theory formulated in Finsler like variables with conventional nonholonomic 2+2 splitting.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. R. Penrose and W. Rindler, Spinors and Space–Time, vols. 1 & 2. (Cambridge University Press, 1984 & 1986).

  2. Yu. I. Manin, Gauge Field Theory and Complex Geometry. (Springer–Verlag, 1988).

  3. R. S. Ward and R. O. Wells, Jr, Twistor Geometry and Field Theory. (Cambridge University Press, 1990).

  4. S. A. Huggett and K. P. Tod, An Introduction to Twistor Theory. London Mathematical Society Student Texts 4, second edition (Cambridge University Press, 1994).

  5. S. Vacaru, Decoupling of Field Equations in Einstein and Modified Gravity. J. Phys.: Conf. Ser. 543 (2013) 012021; arXiv:1108.2022v3.

  6. Vacaru S.: Branes and quantization for an A-model complexification of Einstein gravity in almost Kaehler variables. Int. J. Geom.Meth. Mod. Phys. 6, 873–909 (2009)

    Article  MATH  MathSciNet  Google Scholar 

  7. Vacaru S.: Einstein gravity as a nonholonomic almost Kähler geometry, Lagrange-Finsler variables, and deformation quantization. J. Geom. Phys. 60, 1289–1305 (2010)

    Article  ADS  MATH  MathSciNet  Google Scholar 

  8. Vacaru S.: Two-connection renormalization and nonholonomic gauge models of Einstein gravity. Int. J. Geom. Meth. Mod. Phys. 7, 713–744 (2010)

    Article  MATH  MathSciNet  Google Scholar 

  9. H. Rund, The Differential Geometry of Finsler Spaces (Springer–Verlag, 1959).

  10. M. Matsumoto, Foundations of Finsler Geometry and Special Finsler Spaces. (Kaisisha: Shigaken, Japan, 1986).

  11. A. Bejancu, Finsler Geometry and Applications. (Ellis Horwood, Chichester, England, 1990).

  12. A. Bejancu and H. R. Farran, Geometry of Pseudo–Finsler Submanifolds. (Kluwer Academic Publishers, 2000).

  13. D. Bao, S. -S. Chern and Z. Shen, An Introduction to Riemann–Finsler Geoemtry. Graduate Text in Math., 200 (Springer-Verlag, 2000).

  14. Clifford and Riemann- Finsler Structures in Geometric Mechanics and Gravity, Selected Works, by S. Vacaru, P. Stavrinos, E. Gaburov and D. Gonţa. Differential Geometry - Dynamical Systems, Monograph 7 (Geometry Balkan Press, 2006), www.mathem.pub.ro/dgds/mono/va-t.pdf and gr-qc/0508023.

  15. Stavrinos P.: Weak gravitational field in Finsler–Randers space and Raychaudhuri equation. Gen. Rel. Grav. 44, 3029–3045 (2012)

    Article  ADS  MATH  MathSciNet  Google Scholar 

  16. A. P. Kouretsis, M. Stathakopoulos and P. C. Stavrinos, Imperfect fluids, Lorentz violations and Finsler csomology. Phys. Rev. D 82 (2010), 064035.

  17. Mavromatos N.E., Mitsou V.A., Sarkar S., Vergou A.: Implications of a stochastic microscopic Finsler cosmology. Eur. Phys. J. C72, 1956 (2012)

    Article  ADS  Google Scholar 

  18. Skakala J., Visser M.: Bi–metric pseudo–Finslerian spacetimes. J. Geom. Phys. 61, 1396–1400 (2011)

    Article  ADS  MATH  MathSciNet  Google Scholar 

  19. S. Vacaru, Finsler and Lagrange geometries in Einstein and string gravity. Int. J. Geom. Meth. Mod. Phys. 5 (2008), 473-511.

  20. S. Vacaru, Spinor structures and nonlinear connections in vector bundles, generalized Lagrange and Finsler spaces. J. Math. Phys. 37 (1996), 508-523.

  21. S. Vacaru, Spinors and field interactions in higher order anisotropic spaces. JHEP, 09 (1998), 011, p. 1-49.

  22. S. Vacaru and P. Stavrinos, Spinors and Space-Time Anisotropy. (Athens University Press, Athens, Greece, 2002), 301 pages, gr-qc/0112028.

  23. E. Cartan, Les Espaces de Finsler. (Paris, Herman, 1935).

  24. S. Vacaru, The entropy of Lagrange-Finsler spaces and Ricci flows. Rep. Math. Phys. 63 (2009), 95-110.

  25. S. Vacaru, Superstrings in higher order extensions of Finsler superspaces. Nucl. Phys. B 434 (1997), 590 −656.

  26. S. Vacaru, Spectral functionals, nonholonomic Dirac operators, and noncommutative Ricci flows. J. Math. Phys. 50 (2009), 073503.

  27. S. Vacaru, Finsler branes and quantum gravity phenomenology with Lorentz symmetry violations. Class. Quant. Grav. 28 (2011), 215991.

  28. Vacaru S.: Critical remarks on Finsler modifications of gravity and cosmology by Zhe Chang and Xin Li. Phys. Lett. B 690, 224–228 (2010)

    Article  ADS  MathSciNet  Google Scholar 

  29. S. I. Vacaru, Minisuperspace twistor quantum cosmology. Studia Universitatis Babes-Bolyai, Cluj-Napoca, Romania, XXXIV, 2 (1990), 36–43.

  30. S. Vacaru and S. Ostaf, Twistors and nearly autoparallel maps. Rep. Math. Phys. 37 (1996,) 309–324.

  31. S. Vacaru, Application of Nearly Authoparallel Maps and Twistor–Gauge Methods in Gravity and Condensed States. (Department of Physics, University Alexandru Ioan Cuza, Iaşi, Romania, 1994) [in Romanian].

  32. G. Vrănceanu, Sur les espaces non holonomes. C. R. Acad. Paris 103 (1926), 852–854.

  33. G. Vrănceanu, Sur quelques point de la théories des espaces non holonomes. Bull. Fac. Şt. Cernăuţi 5 (1931) 177–205.

  34. G. Vrănceanu, Leçons de Geometrie Differentielle. Vol. II (Edition de l’Academie de la Republique Poopulaire de Roumanie, 1957).

  35. A. Bejancu and H. R. Farran, Foliations and Geometric Structures. (Springer, 2003).

  36. Kern J.: Lagrange Geometry, Archiv der Mathematik.. (Basel) 25, 438–443 (1974)

    MATH  MathSciNet  Google Scholar 

  37. Akbar-Zadeh H.: Generalized Einstein manifolds. J. Geom. Phys. 17, 342–380 (1995)

    Article  ADS  MATH  MathSciNet  Google Scholar 

  38. C. Ehresmann, Les conexiones infinitèsmales dans un espace fibré différentiable. Coloque de Topologie, Bruxelles (1955) 29–55

  39. A. Kawaguchi, On the theory of non–linear connections. I, II, Tensor, N. S. 2 (1952), 123–142; 6 (1956), 165–199.

  40. S. Casey, M. Dunajski and P. Tod, Twistor geometry of a pair of second order ODEs. arXiv:1203.4158.

  41. S. Vacaru, Principles of Einstein-Finsler Gravity and Perspectives in Modern Cosmology. Int. J. Mod. Phys. D 21 (2012), 1250072.

  42. Berwald L.: On Cartan and Finsler geometries, III. Two dimensional Finsler spaces with rectilinear extrema, Ann. Math. 42, 84–122 (1941)

    MathSciNet  Google Scholar 

  43. S. Chern, Local equivalence and Euclidean connections in Finsler spaces. Sci. Rep. Nat. Tsing Hua Univ. Ser. A 5 (1948) 95–121; or Selected Papers, vol. II, 1994 (Springer, 1989.)

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sergiu I. Vacaru.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Vacaru, S.I. Spinor and Twistor Geometry in Einstein Gravity and Finsler Modifications. Adv. Appl. Clifford Algebras 25, 453–485 (2015). https://doi.org/10.1007/s00006-014-0513-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00006-014-0513-x

Keywords

Navigation