Skip to main content
Log in

2D Quaternionic Time-Harmonic Maxwell System in Elliptic Coordinates

  • Published:
Advances in Applied Clifford Algebras Aims and scope Submit manuscript

Abstract

In this paper we consider the 2D time–harmonic Maxwell equations in elliptic coordinates through certain quaternionic perturbed Dirac operator. The main goal is aimed to analyze an electromagnetic Dirichlet problem for a curvilinear polygon with rectifiable boundary in \({\mathbb{R}^2}\). In addition, we provide an integral representation formula for electromagnetic fields that resembles the classical Stratton-Chu formula. The importance of the problem for applications makes it worthy of consideration.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. R. Abreu Blaya, R. Ávila Ávila, J. Bory Reyes, Boundary value problems for Dirac operators and Maxwell’s equations in fractal domains. Math. Meth. Appl. Sci. (2014). doi:10.1002/mma.3073

  2. G. B. Arfken, H. J. Weber, F. H. Harris, Mathematical Methods for Physicists. Academic Press. Elsevier, seventh edition, 2013.

  3. H. T. Anastassiu, P. E. Atlamazoglou, D. I. Kaklamani, Application of bicomplex (quaternion) algebra to fundamental electromagnetics: a lower order alternative to the Helmholtz equation. IEEE Trans. Antennas and Propagation 51, no. 8 (2003), 2130–2136.

  4. H. Ammari, G. Bao, A. W. Wood, An integral equation method for the electromagnetic scattering from cavities. Math. Methods Appl. Sci. 23, no. 12 (2000), 1057–1072.

  5. Colton D., Kress R.: Integral equations methods in scattering theory. N.Y., John Wiley and Sons (1983)

    Google Scholar 

  6. Colton D., Kress R.: it Inverse acoustic and electromagnetic scattering theory. Springer, Berlin (1992)

    Book  Google Scholar 

  7. M. Costabel, M. Dauge, D. Martin, G. Vial, Weighted regularization of Maxwell equations: computations in curvilinear polygons (2003). Brezzi, Franco (ed.) et al., Numerical mathematics and advanced applications. Proceedings of ENUMATH 2001, the 4th European conference, Ischia, July 2001. Berlin: Springer. 273-280.

  8. W. Greiner, Relativistic quantum mechanics. Springer-Verlag, 1990.

  9. Gerus O., Shapiro M.: On the boundary values of a quaternionic generalization of the Cauchy type integral in \({\mathbb{R}^2}\) for rectifiable curves. J. Nat. Geom. 24(1-2), 120–136 (2003)

    MATH  MathSciNet  Google Scholar 

  10. O. Gerus, B. Schneider, M. Shapiro, On boundary properties of a-hyperholomorphic functions in domains of \({\mathbb{R}^2}\) with the piece-wise Liapunov boundary. Progress in Analysis, Proceedings of 3rd International ISAAC Congress, Volume 1, Berlin, Germany, 20 - 25 August 2001. H. Begehr, R. Gilbert and M. Wong (Eds.) World Scientific (2003), 375–382.

  11. O. Gerus, M. Shapiro, On a Cauchy-type integral related to the Helmholtz operator in the plane. Bol. Soc. Mat. Mexicana (3), Volume 10 (2004), 63–82.

  12. K. Gürlebeck, W. Sprössig, Quaternionic and Clifford Calculus for Physicists and Engineers. Wiley and Sons Publ., 1997.

  13. K. Güerlebeck, K. Habetha, W. Sprössig, Holomorphic Functions in the Plane and n-Dimensional Space. Birkhäuser Verlag, Basel, 2008.

  14. K. Gürlebeck, M. Shapiro, W. Sprössig, On a Teodorescu transform for a class of metaharmonic functions. J. Nat. Geom. 21, no. 1-2 (2002), 17–38.

  15. A. Hanyga (1996). Asymptotic diffraction theory and its application to edgeand- vertex diffraction. Z. Angew. Math. Mech. 76, Suppl. 5 (2002), 193-194.

  16. K. Imaeda, A new formulation of classical electrodynamics. Nuovo Cimento, v. 32 B, No. 1 (1976), 138-162.

  17. Kravchenko V., Shapiro M.: Quaternionic time–harmonic Maxwell operator. J. Phys. A: Math. Gen. 28, 5017–5031 (1995)

    Article  ADS  MATH  MathSciNet  Google Scholar 

  18. V. V. Kravchenko, On the relation between holomorphic biquaternionic functions and time–harmonic electromagnetic fields. Deposited in Ukr INTEI, 29.12, No. 2073-Uk-92 (1992), 18pp.

  19. V. Kravchenko, M. Shapiro, Integral representations for spatial models of mathematical physics. Pitman Res. Notes in Math. Ser. 351. Longman, Harlow (1996), pp. vi+247.

  20. V. V. Kravchenko, Applied quaternionic analysis. Maxwell’s system and Dirac’s equation. Functional-analytic and complex methods, their interactions, and applications to partial differential equations. (Graz, 2001), (2001), 143–160, World Sci. Publ., River Edge, NJ.

  21. V. V. Kravchenko, Applied quaternionic analysis. Research and Exposition in Mathematics (2003), 28. Heldermann Verlag, Lemgo.

  22. N. Morita, N. Kumagai, J. R. Mautz, Integral equation methods for electromagnetics. Translated from the 1987 Japanese original. Translation revised by Mautz. The Artech House Antennas and Propagation Library. Artech House, Inc., Boston, MA, 1990.

  23. S. Langdon, M. Mokgolele, S. N. Chandler-Wilde, High frequency scattering by convex curvilinear polygons. J. Comput. Appl. Math. 234, no. 6 (2010), 2020–2026.

  24. D. Li, J.F. Mao, A Koch-like sided fractal bow-tie dipole antenna. Antennas and Propagation, IEEE Transactions on. Vol. 60, no 5 (2012), 2242–2251.

  25. M. E. Luna-Elizarrarás, R. M. Rodríguez-Dagnino, M. Shapiro, On a version of quaternionic function theory related to Mathieu functions. Simos, Theodore E. (ed.) et al., Numerical analysis and applied mathematics. International conference of numerical analysis and applied mathematics, Corfu, Greece (2007), 16–20 September 2007. Melville, NY: American Institute of Physics (AIP). AIP Conference Proceedings 936, 761–763.

  26. M. E. Luna-Elizarrarás, M. A. Pérez-de la Rosa, R. M. Rodríguez-Dagnino, M. Shapiro, On quaternionic analysis for the Schrödinger operator with a particular potential and its relation with the Mathieu functions. Math. Methods Appl. Sci. 36, No. 9 (2013), 1080–1094.

  27. R. Magnanini, F. Santosa, Wave propagation in a 2-D optical waveguide. SIAM J. Appl. Math. 61, no. 4(2000/01), 1237–1252.

  28. A.D. Moskovciakova, M.D. Storzer, A. Beyer, Direct Magnetic problems solved by quaternion analog of 3-D Cauchy-Riemann Systems. Archiv für Elektrotechnik, vol. 76, no 6 (1993), 417–421.

  29. R. Rocha-Chá vez, M. Shapiro, L. Tovar, On the Hilbert operator for a- hyperholomorphic function theory in \({\mathbb{R}^2}\). Complex Variables Theory Appl. 43, No. 1 (2000), 1–28.

  30. Schneider B., Kavaklioglu Ö.: Poincaré-Bertrand formula on a piecewise Liapunov curve in two-dimensional. Appl. Math. Comput. 202, 814–819 (2008)

    Article  MATH  MathSciNet  Google Scholar 

  31. Shapiro M., Tovar L.: Two-dimensional Helmholtz operator and its hyperholomorphic solutions. J. Nat. Geom. 11, 77–100 (1997)

    MATH  MathSciNet  Google Scholar 

  32. M. Shapiro, L. Tovar, On a class of integral representations related to the Twodimensional Helmholtz operator. Contemporary Mathematics, vol. 212 (1998), 229–244.

  33. W. Sprössig, Quaternionic analysis and Maxwell’s equations. CUBO vol. 7, No. 2 (2005), 57–67.

  34. E.M. Stein, Singular Integrals and Differentiability Properties of Functions. Princeton Math. Ser. 30, Princeton Univ. Press, Princeton, N.J., 1970.

  35. Stratton J.A., Chu L.J.: Diffraction theory of electromagnetic waves. Phys. Rev., II. Ser. 56, 99–107 (1939)

    ADS  Google Scholar 

  36. G. Uhlmann, T. Zhou. Inverse Electromagnetic Problems. www.math.washington.edu/gunther/publications/.../InvEMprob3.pdf

  37. Vaz J. Jr., Rodrigues W. Jr.: Equivalence of Dirac and Maxwell equations and quantum mechanics. Internat. J. Theoret. Phys. 32, no. 6, 945–959 (1993)

    Article  ADS  MATH  MathSciNet  Google Scholar 

  38. V. S. Vladimirov. it Equations of Mathematical Physics. Translated from the Russian first edition. Marcel Dekker, Inc., N.A Treatise on the Theory of Bessel Functions. Cambridge Univ. Press, Cambridge, second edition, 1995.

  39. G. N. Watson. A Treatise on the Theory of Bessel Functions. Cambridge Univ. Press, Cambridge, second edition, 1995.

  40. A. W. Wood, Analysis of electromagnetic scattering from an overfilled cavity in the ground plane. J. Comput. Phys. 215, no. 2 (2006), 630–641.

  41. M. S. Zhdanov. Integral transforms in geophysics. Translated from the Russian by Tamara M. Pyankova. Springer-Verlag, Berlin, 1988.

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ramón M. Rodríguez–Dagnino.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Abreu–Blaya, R., Ávila–Ávila, R., Bory–Reyes, J. et al. 2D Quaternionic Time-Harmonic Maxwell System in Elliptic Coordinates. Adv. Appl. Clifford Algebras 25, 255–270 (2015). https://doi.org/10.1007/s00006-014-0485-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00006-014-0485-x

Keywords

Navigation