Skip to main content
Log in

Fundamental Representations and Algebraic Properties of Biquaternions or Complexified Quaternions

  • Published:
Advances in Applied Clifford Algebras Aims and scope Submit manuscript

Abstract

The fundamental properties of biquaternions (complexified quaternions) are presented including several different representations, some of them new, and definitions of fundamental operations such as the scalar and vector parts, conjugates, semi-norms, polar forms, and inner products. The notation is consistent throughout, even between representations, providing a clear account of the many ways in which the component parts of a biquaternion may be manipulated algebraically.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Abłamowicz R., Fauser B., Podlaski K., Rembielinski J.: Idempotents of Clifford algebras. Czechoslovak Journal of Physics 53(11), 949–954 (2003)

    Article  MathSciNet  ADS  Google Scholar 

  2. Altmann Simon L.: Rotations, Quaternions, and Double Groups. Oxford University Press, Oxford (1986)

    MATH  Google Scholar 

  3. Benno Artmann, The concept of number : from quaternions to monads and topological fields. Ellis Horwood series in mathematics and its applications. Ellis Horwood, Halsted, Chichester, 1988. Translation of: Der Zahlbegriff, Gottigen: Vandenhoeck & Rupprecht, 1983. Translated with additional exercises and material by H.B. Griffiths.

  4. Borowski, E.J., Borwein, J.M., editors: Collins Dictionary of Mathematics. HarperCollins, Glasgow, 2nd edition, (2002)

    Google Scholar 

  5. Bouvier, Alain, George, Michel, Le Lionnais, Franois, editors: Dictionnaire des Mathmatiques. Quadrige/Puf, Paris, 2e edition, (2005)

    Google Scholar 

  6. Clifford William K.: Preliminary sketch of biquaternions. Proc. London Math. Soc. s1-4(1), 381–395 (1871)

    Article  MathSciNet  Google Scholar 

  7. Coxeter H.S.M.: Quaternions and reflections. American Mathematical Monthly 53(3), 136–146 (1946)

    Article  MathSciNet  MATH  Google Scholar 

  8. Stefano de Leo and Waldyr A. Rodrigues, Jr. Quaternionic electron theory: Geometry, algebra, and Dirac’s spinors. International Journal of Theoretical Physics, 37 (6) (1998), 1707–1720. ISSN 0020-7748 (Print) 1572-9575 (Online).

  9. T. A. Ell and S. J. Sangwine. Quaternion involutions. Preprint: http://www.arxiv.org/abs/math.RA/0506034, June 2005.

  10. Ell T.A., Sangwine S.J.: Quaternion involutions and anti-involutions. Computers and Mathematics with Applications 53(1), 137–143 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  11. Todd A. Ell and Stephen J. Sangwine, Linear quaternion systems Toolbox for Matlab®. http://lqstfm.sourceforge.net/, 2007Software library, licensed under the GNU General Public License.

  12. Andre Gsponer and Jean-Pierre Hurni, Lanczos – Einstein – Petiau: From Dirac’s equation to nonlinear wave mechanics. Preprint, August 2005. URL http://www.arxiv.org/abs/physics/0508036.

  13. Gürlebeck Klaus, Sprössig Wolfgang: Quaternionic and Clifford Calculus for Physicists and Engineers. John Wiley, Chichester (1997)

    MATH  Google Scholar 

  14. H. Halberstam and R. E. Ingram, editors, The Mathematical Papers of Sir William Rowan Hamilton, volume III Algebra. Cambridge University Press, Cambridge, 1967.

  15. Hamilton W.R.: On a new species of imaginary quantities connected with the theory of quaternions. Proceedings of the Royal Irish Academy 2, 424–434 (1844)

    Google Scholar 

  16. Hamilton W.R.: Researches respecting quaternions. Transactions of the Royal Irish Academy 21, 199–296 (1848)

    Google Scholar 

  17. W. R. Hamilton, Lectures on Quaternions. Hodges and Smith, Dublin, 1853. Available online at Cornell University Library: http://historical.library.cornell.edu/math/.

  18. Hamilton W.R.: Elements of Quaternions. Longmans, Green and Co., London (1866)

    Google Scholar 

  19. W. R. Hamilton, On the geometrical interpretation of some results obtained by calculation with biquaternions. In Halberstam and Ingram [14], chapter 35, pages 424–5. First published in Proceedings of the Royal Irish Academy, 1853.

  20. W. R. Hamilton, On a new species of imaginary quantities connected with the theory of quaternions. In Halberstam and Ingram [14], chapter 5, pages 111–116. First published as [15].

  21. W. R. Hamilton, Researches respecting quaternions. First series (1843). In Halberstam and Ingram [14],chapter 7, pages 159–226. First published as [16].

  22. W. R. Hamilton, On quaternions. In Halberstam and Ingram [14], chapter 8, pages 227–297. First published in various articles in Philosophical Magazine, 1844–1850.

  23. Hestenes David, Sobczyk Garret: Clifford Algebra to Geometric Calculus. D. Reidel Publishing Company, Dordrecht (1984)

    Book  MATH  Google Scholar 

  24. David Hestenes, Hongbo Li, and Alyn Rockwood, New algebraic tools for classical geometry. In Sommer [37], chapter 1, pages 3–26.

  25. Eckhard Hitzer and Rafał Abłamowicz. Geometric roots of −1 in Clifford algebras Cℓ p,q with p + q ≤ 4. Preprint: http://arxiv.org/abs/arxiv:0905.3019, May 2009.

  26. Kantor I.L., Solodnikov A.S.: Hypercomplex numbers, an elementary introduction to algebras. Springer-Verlag, New York (1989)

    MATH  Google Scholar 

  27. Kelland Philip, Tait Peter Guthrie: Introduction to quaternions. Macmillan, London, 3rd edition, (1904)

    Google Scholar 

  28. Kuipers J.B.: Quaternions and Rotation Sequences. Princeton University Press, Princeton, New Jersey (1999)

    MATH  Google Scholar 

  29. Lasenby Joan, Lasenby Anthony N., Doran Chris J. L.: A unified mathematical language for physics and engineering in the 21st century. Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences 358, 21–39 (2000)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  30. Li H.: Invariant Algebras and Geometric Reasoning. World Scientific, Singapore (2008)

    Book  MATH  Google Scholar 

  31. Nelson, David, editor: The Penguin Dictionary of Mathematics. Penguin Books, London, third edition, (2003)

    Google Scholar 

  32. Porteous I.R.: Topological Geometry. Cambridge University Press, Cambridge (1981)

    Book  MATH  Google Scholar 

  33. Sangwine S.J.: Biquaternion (complexified quaternion) roots of −1. Adv. appl. Clifford alg. 16(1), 63–68 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  34. Sangwine S.J., Alfsmann Daniel: Determination of the biquaternion divisors of zero, including the idempotents and nilpotents. Adv. appl. Clifford alg. 20(2), 401–410 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  35. Sangwine S.J., Le Bihan N.: Quaternion polar representation with a complex modulus and complex argument inspired by the Cayley-Dickson form. Adv. appl. Clifford alg. 20(1), 111–120 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  36. Stephen J. Sangwine and Nicolas Le Bihan, Quaternion Toolbox for Matlab®. http://qtfm.sourceforge.net/, 2005. Software library, licensed under the GNU General Public License.

  37. Sommer, G., editor: Geometric computing with Clifford algebras: theoretical foundations and applications in computer vision and robotics. Springer-Verlag, London, UK (2001)

    MATH  Google Scholar 

  38. Sudbery A.: Quaternionic analysis. Mathematical Proceedings of the Cambridge Philosophical Society 85(2), 199–225 (1979)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  39. Jaap Suter, Geometric algebra primer. Self-published on personal website: http://www.jaapsuter.com/data/2003-3-12-geometric-algebra/geometric-algebra.pdf

  40. J. L. Synge, Quaternions, Lorentz transformations, and the Conway-Dirac- Eddington matrices. Communications of the Dublin Institute for Advanced Studies, Series A 21, Dublin Institute for Advanced Studies, Dublin, 1972.

  41. P. G. Tait, Sketch of the analytical theory of quaternions. In An elementary treatise on Quaternions, chapter VI, pages 146–159. Cambridge University Press, third edition, 1890. Chapter by ‘Prof Cayley’ (Arthur Cayley).

  42. J. P. Ward, Quaternions and Cayley Numbers: Algebra and Applications. volume 403 of Mathematics and Its Applications. Kluwer, Dordrecht, 1997.

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Stephen J. Sangwine.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Sangwine, S.J., Ell, T.A. & Le Bihan, N. Fundamental Representations and Algebraic Properties of Biquaternions or Complexified Quaternions. Adv. Appl. Clifford Algebras 21, 607–636 (2011). https://doi.org/10.1007/s00006-010-0263-3

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00006-010-0263-3

Mathematics Subject Classification (2010)

Keywords

Navigation