Skip to main content
Log in

Transcription Factors and Epigenetic Modulation: Its Therapeutic Implication in Chronic Kidney Disease

  • Review
  • Published:
Archivum Immunologiae et Therapiae Experimentalis Aims and scope

Abstract

Recently emerging evidence has shown that epigenetic mechanisms are involved in initiation and progression of various diseases, including kidney diseases. In the present article, we review the current data regarding the role of epigenetic modulation in chronic kidney disease (CKD) and kidney fibrosis, including DNA methylation and histone modification. Especially we focused on the role of transcription factors in epigenetic modulation and the possibility of therapeutic target of CKD. We have recently reported that transcription factor Kruppel-like factor 4 (also known as gut-enriched Kruppel-like factor) is expressed in kidney podocytes (visceral epithelial cells) and modulates podocyte phenotype by gene-selective epigenetic control. Targeting transcription factors for epigenetic modification may be a good candidate for remission and regression of CKD. It is necessary for the therapy of CKD with an epigenetic-based approach to investigate organ-, tissue-, or gene-specific treatment methods for reduction of side effects.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1

Similar content being viewed by others

References

  • Aoi T, Yae K, Nakagawa M et al (2008) Generation of pluripotent stem cells from adult mouse liver and stomach cells. Science 321:699–702

    Article  CAS  PubMed  Google Scholar 

  • Azuma M, Koyama D, Kikuchi J et al (2012) Promoter methylation confers kidney-specific expression of the Klotho gene. FASEB J 26:4264–4274

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Bechtel W, McGoohan S, Zeisberg EM et al (2010) Methylation determines fibroblast activation and fibrogenesis in the kidney. Nat Med 16:544–550

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Bonasio R, Tu S, Reinberg D (2010) Molecular signals of epigenetic states. Science 330:612–616

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Bostick M, Kim JK, Esteve PO et al (2007) UHRF1 plays a role in maintaining DNA methylation in mammalian cells. Science 317:1760–1764

    Article  CAS  PubMed  Google Scholar 

  • Cianciolo Cosentino C, Skrypnyk NI, Brilli LL et al (2013) Histone deacetylase inhibitor enhances recovery after AKI. J Am Soc Nephrol 24:943–953

    Article  PubMed Central  PubMed  Google Scholar 

  • Deelman LE, Decleves AE, Rychak JJ et al (2010) Targeted renal therapies through microbubbles and ultrasound. Adv Drug Deliv Rev 62:1369–1377

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Hauser PV, Pippin JW, Kaiser C et al (2010) Novel siRNA delivery system to target podocytes in vivo. PLoS One 5:e9463

    Article  PubMed Central  PubMed  Google Scholar 

  • Hayashi K, Sasamura H, Nakamura M et al (2014) KLF4-dependent epigenetic remodeling modulates podocyte phenotypes and attenuates proteinuria. J Clin Invest 124:2523–2537

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Hervouet E, Vallette FM, Cartron PF (2009) Dnmt3/transcription factor interactions as crucial players in targeted DNA methylation. Epigenetics 4:487–499

    Article  CAS  PubMed  Google Scholar 

  • Ingrosso D, Cimmino A, Perna AF et al (2003) Folate treatment and unbalanced methylation and changes of allelic expression induced by hyperhomocysteinaemia in patients with uraemia. Lancet 361:1693–1699

    Article  CAS  PubMed  Google Scholar 

  • Kinugasa F, Noto T, Matsuoka H et al (2010) Prevention of renal interstitial fibrosis via histone deacetylase inhibition in rats with unilateral ureteral obstruction. Transpl Immunol 23:18–23

    Article  CAS  PubMed  Google Scholar 

  • Kottgen A, Pattaro C, Böger CA et al (2010) New loci associated with kidney function and chronic kidney disease. Nat Genet 42:376–384

    Article  PubMed Central  PubMed  Google Scholar 

  • Lefevre GM, Patel SR, Kim D et al (2010) Altering a histone H3K4 methylation pathway in glomerular podocytes promotes a chronic disease phenotype. PLoS Genet 6:e1001142

    Article  PubMed Central  PubMed  Google Scholar 

  • Liu N, He S, Ma L et al (2013) Blocking the class I histone deacetylase ameliorates renal fibrosis and inhibits renal fibroblast activation via modulating TGF-beta and EGFR signaling. PLoS One 8:e54001

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Maherali N, Ahfeldt T, Rigamonti A et al (2008) A high-efficiency system for the generation and study of human induced pluripotent stem cells. Cell Stem Cell 3:340–345

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Mann BS, Johnson JR, Cohen MH et al (2007) FDA approval summary: vorinostat for treatment of advanced primary cutaneous T-cell lymphoma. Oncologist 12:1247–1252

    Article  CAS  PubMed  Google Scholar 

  • Marumo T, Hishikawa K, Yoshikawa M et al (2010) Histone deacetylase modulates the proinflammatory and -fibrotic changes in tubulointerstitial injury. Am J Physiol Renal Physiol 298:F133–F141

    Article  CAS  PubMed  Google Scholar 

  • Nanayakkara PW, Kiefte-de Jong JC, Stehouwer CD et al (2008) Association between global leukocyte DNA methylation, renal function, carotid intima-media thickness and plasma homocysteine in patients with stage 2–4 chronic kidney disease. Nephrol Dial Transplant 23:2586–2592

    Article  CAS  PubMed  Google Scholar 

  • Pang M, Kothapally J, Mao H et al (2009) Inhibition of histone deacetylase activity attenuates renal fibroblast activation and interstitial fibrosis in obstructive nephropathy. Am J Physiol Renal Physiol 297:F996–F1005

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Sharif J, Muto M, Takebayashi S et al (2007) The SRA protein Np95 mediates epigenetic inheritance by recruiting Dnmt1 to methylated DNA. Nature 450:908–912

    Article  CAS  PubMed  Google Scholar 

  • Shimizu H, Hori Y, Kaname S et al (2010) siRNA-based therapy ameliorates glomerulonephritis. J Am Soc Nephrol 21:622–633

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Smyth LJ, McKay GJ, Maxwell AP et al (2014) DNA hypermethylation and DNA hypomethylation is present at different loci in chronic kidney disease. Epigenetics 9:366–376

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Sun G, Reddy MA, Yuan H et al (2010) Epigenetic histone methylation modulates fibrotic gene expression. J Am Soc Nephrol 21:2069–2080

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Sun CY, Chang SC, Wu MS (2012) Suppression of Klotho expression by protein-bound uremic toxins is associated with increased DNA methyltransferase expression and DNA hypermethylation. Kidney Int 81:640–650

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Sun X, Zhang B, Hong X et al (2013) Histone deacetylase inhibitor, sodium butyrate, attenuates gentamicin-induced nephrotoxicity by increasing prohibitin protein expression in rats. Eur J Pharmacol 707:147–154

    Article  CAS  PubMed  Google Scholar 

  • Takahashi K, Yamanaka S (2006) Induction of pluripotent stem cells from mouse embryonic and adult fibroblast cultures by defined factors. Cell 126:663–676

    Article  CAS  PubMed  Google Scholar 

  • Takahashi K, Tanabe K, Ohnuki M et al (2007) Induction of pluripotent stem cells from adult human fibroblasts by defined factors. Cell 131:861–872

    Article  CAS  PubMed  Google Scholar 

  • Tampe B, Tampe D, Müller CA et al (2014) Tet3-mediated hydroxymethylation of epigenetically silenced genes contributes to bone morphogenic protein 7-induced reversal of kidney fibrosis. J Am Soc Nephrol 25:905–912

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Van Beneden K, Geers C, Pauwels M et al (2011) Valproic acid attenuates proteinuria and kidney injury. J Am Soc Nephrol 22:1863–1875

    Article  PubMed Central  PubMed  Google Scholar 

  • Yang L, Besschetnova TY, Brooks CR et al (2010) Epithelial cell cycle arrest in G2/M mediates kidney fibrosis after injury. Nat Med 16:535–543

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Zhong Y, Chen EY, Liu R et al (2013) Renoprotective effect of combined inhibition of Angiotensin-converting enzyme and histone deacetylase. J Am Soc Nephrol 24:801–811

    Article  PubMed Central  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kaori Hayashi.

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hayashi, K., Itoh, H. Transcription Factors and Epigenetic Modulation: Its Therapeutic Implication in Chronic Kidney Disease. Arch. Immunol. Ther. Exp. 63, 193–196 (2015). https://doi.org/10.1007/s00005-014-0326-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00005-014-0326-6

Keywords

Navigation