Skip to main content

Advertisement

Log in

Cardiomyocyte death in doxorubicin-induced cardiotoxicity

  • Review
  • Published:
Archivum Immunologiae et Therapiae Experimentalis Aims and scope

Abstract

Doxorubicin (DOX) is one of the most widely used and successful antitumor drugs, but its cumulative and dose-dependent cardiac toxicity has been a major concern of oncologists in cancer therapeutic practice for decades. With the increasing population of cancer survivors, there is a growing need to develop preventive strategies and effective therapies against DOX-induced cardiotoxicity, in particular late-onset cardiomyopathy. Although intensive investigations on DOX-induced cardiotoxicity have continued for decades, the underlying mechanisms responsible for DOX-induced cardiotoxicity have not been completely elucidated. A rapidly expanding body of evidence supports the notion that cardiomyocyte death by apoptosis and necrosis is a primary mechanism of DOX-induced cardiomyopathy and that other types of cell death, such as autophagy and senescence/aging, may participate in this process. This review focuses on the current understanding of the molecular mechanisms underlying DOX-induced cardiomyocyte death, including the major primary mechanism of excess production of reactive oxygen species (ROS) and other recently discovered ROS-independent mechanisms. The different sensitivities to DOX-induced cell death signals between adult and young cardiomyocytes will also be discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  • Aihara Y, Kurabayashi M, Tanaka T et al (2000) Doxorubicin represses CARP gene transcription through the generation of oxidative stress in neonatal rat cardiac myocytes: possible role of serine/threonine kinase-dependent pathways. J Mol Cell Cardiol 32: 1401–1414

    Article  PubMed  CAS  Google Scholar 

  • Aliprantis AO, Yang RB, Weiss DS et al (2000) The apoptotic signaling pathway activated by Toll-like receptor-2. EMBO J 19: 3325–3336

    Article  PubMed  CAS  Google Scholar 

  • An J, Li P, Li J et al (2009) ARC is a critical cardiomyocyte survival switch in doxorubicin cardiotoxicity. J Mol Med 87: 401–410

    Article  PubMed  CAS  Google Scholar 

  • Aries A, Paradis P, Lefebvre C et al (2004) Essential role of GATA-4 in cell survival and drug-induced cardiotoxicity. Proc Natl Acad Sci USA 101: 6975–6980

    Article  PubMed  CAS  Google Scholar 

  • Armstrong SC (2004) Anti-oxidants and apoptosis: attenuation of doxorubicin induced cardiomyopathy by carvedilol. J Mol Cell Cardiol 37: 817–821

    Article  PubMed  CAS  Google Scholar 

  • Arola OJ, Saraste A, Pulkki K et al (2000) Acute doxorubicin cardiotoxicity involves cardiomyocyte apoptosis. Cancer Res 60: 1789–1792

    PubMed  CAS  Google Scholar 

  • Bahi N, Zhang J, Llovera M et al (2006) Switch from caspasedependent to caspase-independent death during heart development: essential role of endonuclease G in ischemia-induced DNA processing of differentiated cardiomyocytes. J Biol Chem 281: 22943–22952

    Article  PubMed  CAS  Google Scholar 

  • Bast A, Haenen GR, Bruynzeel AM et al (2007) Protection by flavonoids against anthracycline cardiotoxicity: from chemistry to clinical trials. Cardiovasc Toxicol 7: 154–159

    Article  PubMed  CAS  Google Scholar 

  • Bennink RJ, VanDen Hoff MJ, Van Hemert FJ et al (2004) Annexin V imaging of acute doxorubicin cardiotoxicity (apoptosis) in rats. J Nucl Med 45: 842–848

    PubMed  CAS  Google Scholar 

  • Bergmann MW, Zelarayan L, Gehrke C (2008) Treatment-sensitive premature renal and heart senescence in hypertension. Hypertension 52: 61–62

    Article  PubMed  CAS  Google Scholar 

  • Bernhard D, Laufer G (2008) The aging cardiomyocyte: a mini-review. Gerontology 54: 24–31

    Article  PubMed  CAS  Google Scholar 

  • Bernuzzi F, Recalcati S, Alberghini A et al (2009) Reactive oxygen species-independent apoptosis in doxorubicin-treated H9c2 cardiomyocytes: role for heme oxygenase-1 down-modulation. Chem Biol Interact 177: 12–20

    Article  PubMed  CAS  Google Scholar 

  • Bruynzeel AM, Abou El Hassan MA, Torun E et al (2007) Caspase-dependent and -independent suppression of apoptosis by monoHER in Doxorubicin treated cells. Br J Cancer 96: 450–456

    Article  PubMed  CAS  Google Scholar 

  • Burgess DH, Svensson M, Dandrea T et al (1999) Human skeletal muscle cytosols are refractory to cytochrome c-dependent activation of type-II caspases and lack APAF-1. Cell Death Differ 6: 256–261

    Article  PubMed  CAS  Google Scholar 

  • Burkhart DJ, Barthel BL, Post GC et al (2006) Design, synthesis, and preliminary evaluation of doxazolidine carbamates as prodrugs activated by carboxylesterases. J Med Chem 49: 7002–7012

    Article  PubMed  CAS  Google Scholar 

  • Camello-Almaraz C, Gomez-Pinilla PJ, Pozo MJ et al (2006) Mitochondrial reactive oxygen species and Ca2+ signaling. Am J Physiol Cell Physiol 291: C1082–1088

    Article  PubMed  CAS  Google Scholar 

  • Casey TM, Arthur PG, Bogoyevitch MA (2007) Necrotic death without mitochondrial dysfunction-delayed death of cardiac myocytes following oxidative stress. Biochim Biophys Acta 1773: 342–351

    Article  PubMed  CAS  Google Scholar 

  • Chang J, Xie M, Shah VR et al (2006) Activation of Rho-associated coiled-coil protein kinase 1 (ROCK-1) by caspase-3 cleavage plays an essential role in cardiac myocyte apoptosis. Proc Natl Acad Sci USA 103: 14495–14500

    Article  PubMed  CAS  Google Scholar 

  • Childs AC, Phaneuf SL, Dirks AJ et al (2002) Doxorubicin treatment in vivo causes cytochrome C release and cardiomyocyte apoptosis, as well as increased mitochondrial efficiency, superoxide dismutase activity, and Bcl-2:Bax ratio. Cancer Res 62: 4592–4598

    PubMed  CAS  Google Scholar 

  • Chua CC, Liu X, Gao J et al (2006) Multiple actions of pifithrin-alpha on doxorubicin-induced apoptosis in rat myoblastic H9c2 cells. Am J Physiol Heart Circ Physiol. 290: H2606–2613

    Article  PubMed  CAS  Google Scholar 

  • Cusack BJ, Musser B, Gambliel H et al (2003) Effect of dexrazoxane on doxorubicin pharmacokinetics in young and old rats. Cancer Chemother Pharmacol 51: 139–146

    PubMed  CAS  Google Scholar 

  • D’Anglemont De Tassigny A, Souktani R, Henry P et al (2004) Volume-sensitive chloride channels (ICl,vol) mediate doxorubicin-induced apoptosis through apoptotic volume decrease in cardiomyocytes. Fundam Clin Pharmacol 18: 531–538

    Article  CAS  Google Scholar 

  • Davani S, Deschaseaux F, Chalmers D et al (2005) Can stem cells mend a broken heart? Cardiovasc Res 65: 305–316

    Article  PubMed  CAS  Google Scholar 

  • De Meyer GR, Martinet W (2008) Autophagy in the cardiovascular system. Biochim Biophys Acta 1793: 1485–1495

    PubMed  Google Scholar 

  • Deniaud A, Sharaf El Dein O, Maillier E et al (2008) Endoplasmic reticulum stress induces calcium-dependent permeability transition, mitochondrial outer membrane permeabilization and apoptosis. Oncogene 27: 285–299

    Article  PubMed  CAS  Google Scholar 

  • Diwan A, Matkovich SJ, Yuan Q et al (2009) Endoplasmic reticulum-mitochondria crosstalk in NIX-mediated murine cell death. J Clin Invest 119: 203–212

    PubMed  CAS  Google Scholar 

  • Dorn GW 2nd (2009) Apoptotic and non-apoptotic programmed cardiomyocyte death in ventricular remodelling. Cardiovasc Res 81: 465–473

    Article  PubMed  CAS  Google Scholar 

  • Fan GC, Zhou X, Wang X et al (2008) Heat shock protein 20 interacting with phosphorylated Akt reduces doxorubicin-triggered oxidative stress and cardiotoxicity. Circ Res 103: 1270–1279

    Article  PubMed  CAS  Google Scholar 

  • Fisher PW, Salloum F, Das A et al (2005) Phosphodiesterase-5 inhibition with sildenafil attenuates cardiomyocyte apoptosis and left ventricular dysfunction in a chronic model of doxorubicin cardiotoxicity. Circulation 111: 1601–1610

    Article  PubMed  CAS  Google Scholar 

  • Gen W, Tani M, Takeshita J et al (2001) Mechanisms of Ca2+ overload induced by extracellular H2O2 in quiescent isolated rat cardiomyocytes. Basic Res Cardiol 96: 623–629

    Article  PubMed  CAS  Google Scholar 

  • Gianni L, Herman EH, Lipshultz SE et al (2008) Anthracycline cardiotoxicity: from bench to bedside. J Clin Oncol 26: 3777–3784

    Article  PubMed  Google Scholar 

  • Gustafsson AB, Gottlieb RA (2008) Heart mitochondria: gates of life and death. Cardiovasc Res 77: 334–343

    Article  PubMed  CAS  Google Scholar 

  • Gustafsson AB, Gottlieb RA (2009) Autophagy in ischemic heart disease. Circ Res 104: 150–158

    Article  PubMed  CAS  Google Scholar 

  • Hensley ML, Hagerty KL, Kewalramani T et al (2009) American Society of Clinical Oncology 2008 clinical practice guideline update: use of chemotherapy and radiation therapy protectants. J Clin Oncol 27: 127–145

    Article  PubMed  CAS  Google Scholar 

  • Hoyer-Hansen M, Bastholm L, Szyniarowski P et al (2007) Control of macroautophagy by calcium, calmodulin-dependent kinase kinase-beta, and Bcl-2. Mol Cell 25: 193–205

    Article  PubMed  CAS  Google Scholar 

  • Iarussi D, Indolfi P, Casale F et al (2001) Recent advances in the prevention of anthracycline cardiotoxicity in childhood. Curr Med Chem 8: 1649–1660

    PubMed  CAS  Google Scholar 

  • Ikegami E, Fukazawa R, Kanbe M et al (2007) Edaravone, a potent free radical scavenger, prevents anthracycline-induced myocardial cell death. Circ J 71: 1815–1820

    Article  PubMed  CAS  Google Scholar 

  • Ito T, Fujio Y, Takahashi K et al (2007) Degradation of NFAT5, a transcriptional regulator of osmotic stress-related genes, is a critical event for doxorubicin-induced cytotoxicity in cardiac myocytes. J Biol Chem 282: 1152–1160

    Article  PubMed  CAS  Google Scholar 

  • Jang Y M, Kendaiah S, Drew B et al (2004) Doxorubicin treatment in vivo activates caspase-12 mediated cardiac apoptosis in both male and female rats. FEBS Lett 577: 483–490

    Article  PubMed  CAS  Google Scholar 

  • Jeyaseelan R, Poizat C, Baker RK et al (1997) A novel cardiac- restricted target for doxorubicin. CARP, a nuclear modulator of gene expression in cardiac progenitor cells and cardiomyocytes. J Biol Chem 272: 22800–22808

    Article  PubMed  CAS  Google Scholar 

  • Kajstura J, Rota M, Urbanek K et al (2006) The telomere-telomerase axis and the heart. Antioxid Redox Signal 8: 2125–2141

    Article  PubMed  CAS  Google Scholar 

  • Kalivendi SV, Konorev EA, Cunningham S et al (2005) Doxorubicin activates nuclear factor of activated T-lymphocytes and Fas ligand transcription: role of mitochondrial reactive oxygen species and calcium. Biochem J 389: 527–539

    Article  PubMed  CAS  Google Scholar 

  • Kawamura T, Hasegawa K, Morimoto T et al (2004) Expression of p300 protects cardiac myocytes from apoptosis in vivo. Biochem Biophys Res Commun 315: 733–738

    Article  PubMed  CAS  Google Scholar 

  • Khan M, Varadharaj S, Shobha JC et al (2006) C-phycocyanin ameliorates doxorubicin-induced oxidative stress and apoptosis in adult rat cardiomyocytes. J Cardiovasc Pharmacol 47: 9–20

    Article  PubMed  CAS  Google Scholar 

  • Kim DS, Kim HR, Woo ER et al (2005) Inhibitory effects of rosmarinic acid on adriamycin-induced apoptosis in H9c2 cardiac muscle cells by inhibiting reactive oxygen species and the activations of c-Jun N-terminal kinase and extracellular signal-regulated kinase. Biochem Pharmacol 70: 1066–1078

    Article  PubMed  CAS  Google Scholar 

  • Kim DS, Woo ER, Chae SW et al (2007) Plantainoside D protects adriamycin-induced apoptosis in H9c2 cardiac muscle cells via the inhibition of ROS generation and NF-kappaB activation. Life Sci 80: 314–323

    Article  PubMed  CAS  Google Scholar 

  • Kim SY, Kim SJ, Kim BJ et al (2006) Doxorubicin-induced reactive oxygen species generation and intracellular Ca2+ increase are reciprocally modulated in rat cardiomyocytes. Exp Mol Med 38: 535–545

    PubMed  CAS  Google Scholar 

  • Kim Y, Ma AG, Kitta K et al (2003) Anthracycline-induced suppression of GATA-4 transcription factor: implication in the regulation of cardiac myocyte apoptosis. Mol Pharmacol 63: 368–377

    Article  PubMed  CAS  Google Scholar 

  • Kluza J, Marchetti P, Gallego MA et al (2004) Mitochondrial proliferation during apoptosis induced by anticancer agents: effects of doxorubicin and mitoxantrone on cancer and cardiac cells. Oncogene 23: 7018–7030

    Article  PubMed  CAS  Google Scholar 

  • Konorev EA, Vanamala S, Kalyanaraman B (2008) Differences in doxorubicin-induced apoptotic signaling in adult and immature cardiomyocytes. Free Radic Biol Med 45: 1723–1728

    Article  PubMed  CAS  Google Scholar 

  • Kotamraju S, Konorev EA, Joseph J et al (2000) Doxorubicin- induced apoptosis in endothelial cells and cardiomyocytes is ameliorated by nitrone spin traps and ebselen. Role of reactive oxygen and nitrogen species. J Biol Chem 275: 33585–33592

    Article  PubMed  CAS  Google Scholar 

  • Kratz F, Ehling G, Kauffmann HM et al (2007) Acute and repeat-dose toxicity studies of the (6-maleimidocaproyl)hydrazone derivative of doxorubicin (DOXO-EMCH), an albumin-binding prodrug of the anticancer agent doxorubicin. Hum Exp Toxicol 26: 19–35

    Article  PubMed  CAS  Google Scholar 

  • L’Ecuyer T, Sanjeev S, Thomas R et al (2006) DNA damage is an early event in doxorubicin-induced cardiac myocyte death. Am J Physiol Heart Circ Physiol 291: H1273–280

    Article  PubMed  CAS  Google Scholar 

  • Lebrecht D, Geist A, Ketelsen UP et al (2007) The 6-maleimidocaproyl hydrazone derivative of doxorubicin (DOXO-EMCH) is superior to free doxorubicin with respect to cardiotoxicity and mitochondrial damage. Int J Cancer 120: 927–934

    Article  PubMed  CAS  Google Scholar 

  • Lebrecht D, Geist A, Ketelsen UP et al (2007) Dexrazoxane prevents doxorubicin-induced long-term cardiotoxicity and protects myocardial mitochondria from genetic and functional lesions in rats. Br J Pharmacol 151: 771–778

    Article  PubMed  CAS  Google Scholar 

  • Lebrecht D, Walker UA (2007) Role of mtDNA lesions in anthracycline cardiotoxicity. Cardiovasc Toxicol 7: 108–113

    Article  PubMed  CAS  Google Scholar 

  • Levine B, Sinha S, Kroemer G (2008) Bcl-2 family members: dual regulators of apoptosis and autophagy. Autophagy 4: 600–606

    PubMed  CAS  Google Scholar 

  • Li H, Gu H, Sun B (2007) Protective effects of pyrrolidine dithiocarbamate on myocardium apoptosis induced by adriamycin in rats. Int J Cardiol 114: 159–165

    Article  PubMed  Google Scholar 

  • Li J, Gwilt PR (2003) The effect of age on the early disposition of doxorubicin. Cancer Chemother Pharmacol 51: 395–402

    PubMed  CAS  Google Scholar 

  • Li K, Sung RY, Huang WZ et al (2006) Thrombopoietin protects against in vitro and in vivo cardiotoxicity induced by doxorubicin. Circulation 113: 2211–2220

    Article  PubMed  CAS  Google Scholar 

  • Lim CC, Zuppinger C, Guo X et al (2004) Anthracyclines induce calpain-dependent titin proteolysis and necrosis in cardiomyocytes. J Biol Chem 279: 8290–8299

    Article  PubMed  CAS  Google Scholar 

  • Lipshultz SE, Colan SD, Gelber RD et al (1991) Late cardiac effects of doxorubicin therapy for acute lymphoblastic leukemia in childhood. N Engl J Med 324: 808–815

    Article  PubMed  CAS  Google Scholar 

  • Liu J, Mao W, Ding B et al (2008) ERKs/p53 signal transduction pathway is involved in doxorubicin-induced apoptosis in H9c2 cells and cardiomyocytes. Am J Physiol Heart Circ Physiol 295: H1956–1965

    Article  PubMed  CAS  Google Scholar 

  • Liu X, Chen Z, Chua CC et al (2002) Melatonin as an effective protector against doxorubicin-induced cardiotoxicity. Am J Physiol Heart Circ Physiol 283: H254–263

    PubMed  CAS  Google Scholar 

  • Liu X, Chua CC, Gao J et al (2004) Pifithrin-alpha protects against doxorubicin-induced apoptosis and acute cardiotoxicity in mice. Am J Physiol Heart Circ Physiol 286: H933–939

    Article  PubMed  CAS  Google Scholar 

  • Lou H, Danelisen I, Singal PK (2005) Involvement of mitogen-activated protein kinases in adriamycin-induced cardiomyopathy. Am J Physiol Heart Circ Physiol 288: H1925–1930

    Article  PubMed  CAS  Google Scholar 

  • Machado V, Cabral A, Monteiro P et al (2008) Carvedilol as a protector against the cardiotoxicity induced by anthracyclines (doxorubicin). Rev Port Cardiol 27: 1277–1296

    PubMed  Google Scholar 

  • Madden SD, Donovan M, Cotter TG (2007) Key apoptosis regulating proteins are down-regulated during postnatal tissue development. Int J Dev Biol 51: 415–423

    Article  PubMed  CAS  Google Scholar 

  • Maejima Y, Adachi S, Ito H et al (2008) Induction of premature senescence in cardiomyocytes by doxorubicin as a novel mechanism of myocardial damage. Aging Cell 7: 125–136

    Article  PubMed  CAS  Google Scholar 

  • Maejima Y, Adachi S, Morikawa K et al (2005) Nitric oxide inhibits myocardial apoptosis by preventing caspase-3 activity via S-nitrosylation. J Mol Cell Cardiol 38: 163–174

    Article  PubMed  CAS  Google Scholar 

  • Maiuri MC, Zalckvar E, Kimchi A et al (2007) Self-eating and self-killing: crosstalk between autophagy and apoptosis. Nat Rev Mol Cell Biol 8: 741–752

    Article  PubMed  CAS  Google Scholar 

  • Matsui Y, Kyoi S, Takagi H et al (2008) Molecular mechanisms and physiological significance of autophagy during myocardial ischemia and reperfusion. Autophagy 4: 409–415

    PubMed  CAS  Google Scholar 

  • Mercier I, Vuolo M, Madan R et al (2005) ARC, an apoptosis suppressor limited to terminally differentiated cells, is induced in human breast cancer and confers chemo- and radiation-resistance. Cell Death Differ 12: 682–686

    Article  PubMed  CAS  Google Scholar 

  • Mijares A, Lopez JR (2001) L-carnitine prevents increase in diastolic [CA2+] induced by doxorubicin in cardiac cells. Eur J Pharmacol 425: 117–120

    Article  PubMed  CAS  Google Scholar 

  • Mukhopadhyay P, Batkai S, Rajesh M et al (2007) Pharmacological inhibition of CB1 cannabinoid receptor protects against doxorubicin-induced cardiotoxicity. J Am Coll Cardiol 50: 528–536

    Article  PubMed  CAS  Google Scholar 

  • Munoz-Gamez JA, Rodriguez-Vargas JM, Quiles-Perez R et al (2009) PARP-1 is involved in autophagy induced by DNA damage. Autophagy 5: 61–74

    PubMed  CAS  Google Scholar 

  • Nakamura T, Ueda Y, Juan Y et al (2000) Fas-mediated apoptosis in adriamycin-induced cardiomyopathy in rats: In vivo study. Circulation 102: 572–578

    PubMed  CAS  Google Scholar 

  • Neilan TG, Blake SL, Ichinose F et al (2007) Disruption of nitric oxide synthase 3 protects against the cardiac injury, dysfunction, and mortality induced by doxorubicin. Circulation 116: 506–514

    Article  PubMed  CAS  Google Scholar 

  • Nishida K, Kyoi S, Yamaguchi O et al (2009) The role of autophagy in the heart. Cell Death Differ 16: 31–38

    Article  PubMed  CAS  Google Scholar 

  • Nishida K, Yamaguchi O, Otsu K (2008) Crosstalk between autophagy and apoptosis in heart disease. Circ Res 103: 343–351

    Article  PubMed  CAS  Google Scholar 

  • Nitobe J, Yamaguchi S, Okuyama M et al (2003) Reactive oxygen species regulate FLICE inhibitory protein (FLIP) and susceptibility to Fas-mediated apoptosis in cardiac myocytes. Cardiovasc Res 57: 119–128

    Article  PubMed  CAS  Google Scholar 

  • Niu J, Azfer A, Wang K et al (2009) Cardiac-targeted expression of soluble Fas attenuates doxorubicin-induced cardiotoxicity in mice. J Pharmacol Exp Ther 328: 740–748

    Article  PubMed  CAS  Google Scholar 

  • Nozaki N, Shishido T, Takeishi Y et al (2004) Modulation of doxorubicin-induced cardiac dysfunction in toll-like receptor-2-knockout mice. Circulation 110: 2869–2874

    Article  PubMed  CAS  Google Scholar 

  • Parra V, Eisner V, Chiong M et al (2008) Changes in mitochondrial dynamics during ceramide-induced cardiomyocyte early apoptosis. Cardiovasc Res 77: 387–397

    Article  PubMed  CAS  Google Scholar 

  • Piantadosi CA, Carraway MS, Babiker A et al (2008) Heme oxygenase-1 regulates cardiac mitochondrial biogenesis via Nrf2-mediated transcriptional control of nuclear respiratory factor-1. Circ Res 103: 1232–1240

    Article  PubMed  CAS  Google Scholar 

  • Poizat C, Puri PL, Bai Y et al (2005) Phosphorylation-dependent degradation of p300 by doxorubicin-activated p38 mitogen-activated protein kinase in cardiac cells. Mol Cell Biol 25: 2673–2687

    Article  PubMed  CAS  Google Scholar 

  • Riad A, Bien S, Westermann D et al (2009) Pretreatment with statin attenuates the cardiotoxicity of Doxorubicin in mice. Cancer Res 69: 695–699

    Article  PubMed  CAS  Google Scholar 

  • Rigacci L, Mappa S, Nassi L et al (2007) Liposome-encapsulated doxorubicin in combination with cyclophosphamide, vincristine, prednisone and rituximab in patients with lymphoma and concurrent cardiac diseases or pre-treated with anthracyclines. Hematol Oncol 25: 198–203

    Article  PubMed  CAS  Google Scholar 

  • Rothermel BA, Hill JA (2008) Autophagy in load-induced heart disease. Circ Res 103: 1363–1369

    Article  PubMed  CAS  Google Scholar 

  • Rubinsztein DC, Difiglia M, Heintz N et al (2005) Autophagy and its possible roles in nervous system diseases, damage and repair. Autophagy 1: 11–22

    Article  PubMed  CAS  Google Scholar 

  • Salvatorelli E, Menna P, Lusini M et al (2009) Doxorubicinolone formation and efflux: a salvage pathway against epirubicin accumulation in human heart. J Pharmacol Exp Ther 329: 175–184

    Article  PubMed  CAS  Google Scholar 

  • Sanchis D, Mayorga M, Ballester M et al (2003) Lack of Apaf-1 expression confers resistance to cytochrome c-driven apoptosis in cardiomyocytes. Cell Death Differ 10: 977–986

    Article  PubMed  CAS  Google Scholar 

  • Schmid D, Munz C (2007) Innate and adaptive immunity through autophagy. Immunity 27: 11–21

    Article  PubMed  CAS  Google Scholar 

  • Shi J, Wei L (2007) Rho kinase in the regulation of cell death and survival. Arch Immunol Ther Exp 55: 61–75

    Article  CAS  Google Scholar 

  • Shimizu S, Kanaseki T, Mizushima N et al (2004) Role of Bcl-2 family proteins in a non-apoptotic programmed cell death dependent on autophagy genes. Nat Cell Biol 6: 1221–1228

    Article  PubMed  CAS  Google Scholar 

  • Shimomura H, Terasaki F, Hayashi T et al (2001) Autophagic degeneration as a possible mechanism of myocardial cell death in dilated cardiomyopathy. Jpn Circ J 65: 965–968

    Article  PubMed  CAS  Google Scholar 

  • Shizukuda Y, Matoba S, Mian OY et al (2005) Targeted disruption of p53 attenuates doxorubicin-induced cardiac toxicity in mice. Mol Cell Biochem 273: 25–32

    Article  PubMed  CAS  Google Scholar 

  • Singal PK, Iliskovic N (1998) Doxorubicin-induced cardiomyopathy. N Engl J Med 339: 900–905

    Article  PubMed  CAS  Google Scholar 

  • Solem LE, Heller LJ, Wallace KB (1996) Dose-dependent increase in sensitivity to calcium-induced mitochondrial dysfunction and cardiomyocyte cell injury by doxorubicin. J Mol Cell Cardiol 28: 1023–1032

    Article  PubMed  CAS  Google Scholar 

  • Spallarossa P, Fabbi P, Manca V et al (2005) Doxorubicin-induced expression of LOX-1 in H9c2 cardiac muscle cells and its role in apoptosis. Biochem Biophys Res Commun 335: 188–196

    Article  PubMed  CAS  Google Scholar 

  • Spallarossa P, Garibaldi S, Altieri P et al (2004) Carvedilol prevents doxorubicin-induced free radical release and apoptosis in cardiomyocytes in vitro. J Mol Cell Cardiol 37: 837–846

    Article  PubMed  CAS  Google Scholar 

  • Suliman HB, Carraway MS, Ali AS et al (2007) The CO/HO system reverses inhibition of mitochondrial biogenesis and prevents murine doxorubicin cardiomyopathy. J Clin Invest 117: 3730–3741

    PubMed  CAS  Google Scholar 

  • Takemura G, Fujiwara H (2007) Doxorubicin-induced cardiomyopathy from the cardiotoxic mechanisms to management. Prog Cardiovasc Dis 49: 330–352

    Article  PubMed  CAS  Google Scholar 

  • Tatlidede E, Sehirli O, Velioglu-Ogunc A et al (2009) Resveratrol treatment protects against doxorubicin-induced cardiotoxicity by alleviating oxidative damage. Free Radic Res 43: 195–205

    Article  PubMed  CAS  Google Scholar 

  • Terman A, Brunk UT (2005) Autophagy in cardiac myocyte homeostasis, aging, and pathology. Cardiovasc Res 68: 355–365

    Article  PubMed  CAS  Google Scholar 

  • Terman A, Gustafsson B, Brunk UT (2006) The lysosomal-mitochondrial axis theory of postmitotic aging and cell death. Chem Biol Interact 163: 29–37

    Article  PubMed  CAS  Google Scholar 

  • Tsujimoto Y, Shimizu S (2005) Another way to die: autophagic programmed cell death. Cell Death Differ. 12(suppl 2): 1528–1534

    Article  PubMed  CAS  Google Scholar 

  • Von Hoff DD, Rozencweig M, Layard M et al (1977) Daunomycin-induced cardiotoxicity in children and adults. A review of 110 cases. Am J Med 62: 200–208

    Article  PubMed  CAS  Google Scholar 

  • Wallace KB (2003) Doxorubicin-induced cardiac mitochondrionopathy. Pharmacol Toxicol 93: 105–115

    Article  PubMed  CAS  Google Scholar 

  • Wallace KB (2007) Adriamycin-induced interference with cardiac mitochondrial calcium homeostasis. Cardiovasc Toxicol 7: 101–107

    Article  PubMed  CAS  Google Scholar 

  • Wang GW, Klein JB, Kang YJ. (2001) Metallothionein inhibits doxorubicin-induced mitochondrial cytochrome c release and caspase-3 activation in cardiomyocytes. J Pharmacol Exp Ther 298: 461–468

    PubMed  CAS  Google Scholar 

  • Wang S, Kotamraju S, Konorev E et al (2002) Activation of nuclear factor-kappaB during doxorubicin-induced apoptosis in endothelial cells and myocytes is pro-apoptotic: the role of hydrogen peroxide. Biochem J 367: 729–740

    Article  PubMed  CAS  Google Scholar 

  • Yakovlev AG, Ota K, Wang G et al (2001) Differential expression of apoptotic protease-activating factor-1 and caspase-3 genes and susceptibility to apoptosis during brain development and after traumatic brain injury. J Neurosci 21: 7439–7446

    PubMed  CAS  Google Scholar 

  • Yan C, Ding B, Shishido T et al (2007) Activation of extracellular signal-regulated kinase 5 reduces cardiac apoptosis and dysfunction via inhibition of a phosphodiesterase 3A/inducible cAMP early repressor feedback loop. Circ Res 100: 510–519

    Article  PubMed  CAS  Google Scholar 

  • Yeh ET, Tong AT, Lenihan DJ et al (2004) Cardiovascular complications of cancer therapy: diagnosis, pathogenesis, and management. Circulation 109: 3122–3131

    Article  PubMed  Google Scholar 

  • Yildirim Y, Gultekin E, Avci ME et al (2008) Cardiac safety profile of pegylated liposomal doxorubicin reaching or exceeding lifetime cumulative doses of 550 mg/m2 in patients with recurrent ovarian and peritoneal cancer. Int J Gynecol Cancer 18: 223–227

    Article  PubMed  CAS  Google Scholar 

  • Yorimitsu T, Klionsky DJ (2005) Autophagy: molecular machinery for self-eating. Cell Death Differ 12(suppl 2): 1542–1552

    Article  PubMed  CAS  Google Scholar 

  • Zeng Q, Zhou Q, Yao F et al (2008) Endothelin-1 regulates cardiac L-type calcium channels via NAD(P)H oxidase-derived superoxide. J Pharmacol Exp Ther 326: 732–738

    Article  PubMed  CAS  Google Scholar 

  • Zhou S, Starkov A, Froberg MK et al (2001) Cumulative and irreversible cardiac mitochondrial dysfunction induced by doxorubicin. Cancer Res 61: 771–777

    PubMed  CAS  Google Scholar 

  • Zhu W, Shou W, Payne RM et al (2008) A mouse model for juvenile doxorubicin-induced cardiac dysfunction. Pediatr Res 64: 488–494

    Article  PubMed  CAS  Google Scholar 

  • Zhu W, Soonpaa MH, Chen H (2009) Acute doxorubicin cardiotoxicity is associated with p53-induced inhibition of the mammalian target of rapamycin pathway. Circulation 119: 99–106

    Article  PubMed  CAS  Google Scholar 

  • Zima AV, Blatter LA (2006) Redox regulation of cardiac calcium channels and transporters. Cardiovasc Res 71: 310–321

    Article  PubMed  CAS  Google Scholar 

  • Zou Y, Evans S, Chen J et al (1997) CARP, a cardiac ankyrin repeat protein, is downstream in the Nkx2-5 homeobox gene pathway. Development 124: 793–804

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Yuan-Jian Li or Lei Wei.

About this article

Cite this article

Zhang, YW., Shi, J., Li, YJ. et al. Cardiomyocyte death in doxorubicin-induced cardiotoxicity. Arch. Immunol. Ther. Exp. 57, 435–445 (2009). https://doi.org/10.1007/s00005-009-0051-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00005-009-0051-8

Keywords

Navigation