Skip to main content
Log in

Tumoral angiogenesis and breast cancer

  • Educational Series
  • Molecular Tragets in Oncology
  • Published:
Clinical and Translational Oncology Aims and scope Submit manuscript

Abstract

Breast cancer (BC) is the most common neoplasm in women in Western countries. Tumoral angiogenesis (TA) is essential for the growth and spread of BC cells. There are at least 6 different angiogenic growth factors associated with TA in BC. The major mediator of TA is vascular endothelial growth factor (VEGF), a homodimeric heparin-binding glycoprotein. VEGF signals through VEGF receptor-2 (VEGFR-2), the major VEGF signalling receptor that mediates sprouting angiogenesis. Recently, different antiangiogenic agents have shown efficacy in the treatment of advanced BC. Bevacizumab, a humanised monoclonal antibody against VEGF, in combination with taxanes improves progression-free survival and overall response rate in first-line therapy. Other new antiangiogenic agents, called multi-kinase inhibitors (sunitinib and pazopanib), are under investigation. Finally, a schedule of treatment called metronomic chemotherapy, with antiangiogenic activity, has also demonstrated efficacy in the treatment of advanced BC.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Kerbel RS (2006) Antiangiogenic therapy: a universal chemosensitization strategy for cancer. Science 312:1171–1175

    Article  PubMed  CAS  Google Scholar 

  2. Khosravi P (2006) Angiogenesis y neoplasias. An Med Interna 23:355–356

    Google Scholar 

  3. Risau W (1997) Mechanisms of angiogenesis. Nature 386:671–674

    Article  PubMed  CAS  Google Scholar 

  4. Veikkola T, Karkkainen M, Claesson-Welsh L et al (2000) Regulation of angiogenesis via vascular endothelial growth factor receptors. Cancer Res 60:203–212

    PubMed  CAS  Google Scholar 

  5. Ferrara N, Gerber HP, LeCouter J (2003) The biology of VEGF and its receptors. Nat Med 9:669–676

    Article  PubMed  CAS  Google Scholar 

  6. Khosravi P, Fernandez I (2008) Tumoral angiogenesis: review of the literature. Cancer Invest 26:104–108

    Article  Google Scholar 

  7. Kerbel RS (2008) Tumor angiogenesis. N Engl J Med 358:2039–2049

    Article  PubMed  CAS  Google Scholar 

  8. Foekens JA, Peters HA, Grebenchtchikov N et al (2001) High tumor levels of vascular endothelial growth factor predict poor response to systemic therapy in advanced breast cancer. Cancer Res 61:5407–5414

    PubMed  CAS  Google Scholar 

  9. Linderholm B, Grankvist K, Wilking N et al (2000) Correlation of vascular endothelial growth factor content with recurrences, survival, and first relapse site in primary node-positive breast carcinoma after adjuvant treatment. J Clin Oncol 18:1423–1431

    PubMed  CAS  Google Scholar 

  10. Kumar R, Yoneda J, Bucana CD et al (1998) Regulation of distinct steps of angiogenesis by different angiogenic molecules. Int J Oncol 12:749–757

    PubMed  CAS  Google Scholar 

  11. Pugh CW, Ratcliffe PJ (2003) Regulation of angiogenesis by hypoxia: role of the HIF system. Nat Med 9:677–684

    Article  PubMed  CAS  Google Scholar 

  12. Harris AL (2002) Hypoxia — a key regulatory factor in tumor growth. Nat Rev Cancer 2:38–47

    Article  PubMed  CAS  Google Scholar 

  13. Hewitson KS, McNeill LA, Riordan MV et al (2002) Hypoxia-inducible factor (HIF) asparagine hydroxylase is identical to factor inhibiting HIF (FIH) and is related to the cupin structural family. J Biol Chem 277:26351–26355

    Article  PubMed  CAS  Google Scholar 

  14. Fox SB, Bragança J, Turley H et al (2004) CITED4 inhibits hypoxia-activated transcription in cancer cells, and its cytoplasmic location in breast cancer is associated with elevated expression of tumor cell hypoxia-inducible factor 1α. Cancer Res 64:6075–6081

    Article  PubMed  CAS  Google Scholar 

  15. Willett CG, Boucher Y, di Tomaso E et al (2004) Direct evidence that the VEGF-specific antibody bevacizumab has antivascular effects in human rectal cancer. Nat Med 10:145–147

    Article  PubMed  CAS  Google Scholar 

  16. Cobleigh M, Langmuir V, Sledge GW et al (2003) A phase I/II dose-escalation trial of bevacizumab in previously treated metastatic breast cancer. Semin Oncol 30:117–124

    Article  PubMed  CAS  Google Scholar 

  17. Miller K, Chap LI, Holmes FA et al (2005) Randomized phase III trial of capecitabine compared with bevacizumab plus capecitabine in patients with previously treated metastatic breast cancer. J Clin Oncol 23:792–799

    Article  PubMed  CAS  Google Scholar 

  18. Miller K, Wang M, Gralow J et al (2007) Paclitaxel plus bevacizumab versus paclitaxel alone for metastatic breast cancer. N Engl J Med 357:2666–2676

    Article  PubMed  CAS  Google Scholar 

  19. Schneider BP, Wang M, Radovich M et al (2008) Association of vascular endothelial growth factor and vascular endothelial growth factor receptor-2 genetic polymorphisms with outcome in a trial of paclitaxel compared with paclitaxel plus bevacizumab in advanced breast cancer: ECOG 2100. J Clin Oncol 26:4672–4678

    Article  PubMed  CAS  Google Scholar 

  20. Cristofanilli M, Valero V, Mangalik A et al (2008) A phase II multicenter, double-blind, randomized trial to compare anastrozole plus gefinitib with anastrozole plus placebo in postmenopausal women with hormone receptor-positive (HR+) metastatic breast cancer (MBC). J Clin Oncol 26:abstr 1012

    Google Scholar 

  21. Abrams TJ, Lee LB, Murray LJ et al (2003) SU11248 inhibits KIT and platelet-derived growth factor receptor beta in preclinical models of human small cell lung cancer. Mol Cancer Ther 2:471–478

    PubMed  CAS  Google Scholar 

  22. Mendel DB, Laird AD, Xin X et al (2003) In vivo antitumor activity of SU11248, a novel tyrosine kinase inhibitor targeting vascular endothelial growth factor and platelet-derived growth factor receptors: determination of a pharmacokinetic/pharmacodynamic relationship. Clin Cancer Res 9:327–337

    PubMed  CAS  Google Scholar 

  23. O’Farrell AM, Abrams TJ, Yuen HA et al (2003) SU11248 is a novel FLT3 tyrosine kinase inhibitor with potent activity in vitro and in vivo. Blood 101:3597–3605

    Article  PubMed  CAS  Google Scholar 

  24. Murray LJ, Abrams TJ, Long KR et al (2003) SU11248 inhibits tumor growth and CSF-1R-dependent osteolysis in an experimental breast cancer bone metastasis model. Clin Exp Metastasis 20:757–766

    Article  PubMed  CAS  Google Scholar 

  25. Burstein HJ, Elias AD, Rugo HS et al (2008) Phase II study of sunitinib malate, an oral multitargeted tyrosine kinase inhibitor, in patients with metastatic breast cancer previously treated with an anthracycline and a taxane. J Clin Oncol 26:1810–1816

    Article  PubMed  CAS  Google Scholar 

  26. Slamon D, Gomez HL, Kabbinavar F et al (2008) Randomized study of pazopanib + lapatinib vs. lapatinib alone in patients with HER2- positive advanced or metastatic breast cancer. J Clin Oncol 26:abstr 1016

    Google Scholar 

  27. Laquente B, Vinals F, Germa JR (2007) Metronomic chemotherapy: an antiangiogenic scheduling. Clin Transl Oncol 9:93–98

    Article  PubMed  CAS  Google Scholar 

  28. Khosravi P, Pérez-Manga G (2007) Una nueva estrategia terapéutica en el cáncer de mama: quimioterapia metronómica. An Med Interna 24:261–262

    Google Scholar 

  29. Gasparini G (2001) Metronomic scheduling: the future of chemotherapy? Lancet Oncol 2:733–740

    Article  PubMed  CAS  Google Scholar 

  30. Orlando L, Cardillo A, Rocca A et al (2006) Prolonged clinical benefit with metronomic chemotherapy in patients with metastatic breast cancer. Anticancer Drugs 17:961–967

    Article  PubMed  CAS  Google Scholar 

  31. Orlando L, Cardillo A, Ghisini R et al (2006) Trastuzumab in combination with metronomic cyclophosphamide and methotrexate in patients with Her-2 positive metastatic breast cancer. BMC Cancer 6:225–233

    Article  PubMed  Google Scholar 

  32. Dellapasqua S, Bertolini F, Bagnardi V et al (2008) Metronomic cyclophosphamide and capecitabine combined with bevacizumab in advanced breast cancer. J Clin Oncol 26:4899–4905

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Parham Khosravi Shahi.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Khosravi Shahi, P., Soria Lovelle, A. & Pérez Manga, G. Tumoral angiogenesis and breast cancer. Clin Transl Oncol 11, 138–142 (2009). https://doi.org/10.1007/S12094-009-0329-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/S12094-009-0329-7

Keywords

Navigation