Skip to main content

Advertisement

Log in

Antioxidative peptides: enzymatic production, in vitro and in vivo antioxidant activity and potential applications of milk-derived antioxidative peptides

  • Review Article
  • Published:
Amino Acids Aims and scope Submit manuscript

Abstract

The beneficial effects of food-derived antioxidants in health promotion and disease prevention are being increasingly recognized. Recently, there has been a particular focus on milk-derived peptides; as a source of antioxidants, these peptides are inactive within the sequence of the parent protein but can be released during enzyme hydrolysis. Once released, the peptides have been shown to possess radical scavenging, metal ion chelation properties and the ability to inhibit lipid peroxidation. A variety of methods have been used to evaluate in vitro antioxidant activity, however, there is no standardised methodology, which hinders comparison of data. This review provides an overview on the generation of antioxidative peptides from milk proteins, the proposed mechanisms of protein/peptide induced antioxidant activity, in vitro measurement of antioxidant activity, in vivo evaluation of plasma antioxidant capacity and the bioavailability of antioxidative peptides. The understanding gained from other food proteins is referred to where specific data on milk-derived peptides are limited. The potential applications and health benefits of antioxidant peptides are discussed with a particular focus on the aging population. The regulatory requirements for peptide-based antioxidant functional foods are also considered.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

Abbreviations

AAPH:

2,2′-Azobis-2-methyl-propanimidamide dihydrochloride

ABAP:

2,2-Azobis(2-aminopropane) hydrochloride

ABTS:

2,2′-Azinobis(3-ethylbenzothiazoline-6-sulphonic acid

α-LA:

α-Lactalbumin

Ala:

Alanine

AO:

Antioxidant

AOC:

Antioxidant capacity

AOPI:

Antioxidative potency index

Arg:

Arginine

Asp:

Aspartic acid

AUC:

Area under the curve

BHA:

Butylated hydroxylanisole

BHT:

Butylated hydroxyltoluene

β-CN:

β-Casein

β-LG:

β-Lactoglobulin

CA:

Caffeic acid

Caco-2:

Human adenocarcinoma colon cancer cell monolayer

Cap-e:

Cell-based antioxidant protection assay

CCl4 :

Carbon tetrachloride

CN:

Casein

CAT:

Catalase

CPP:

Caseinphosphopeptide

Cys:

Cysteine

DCFH-DA:

Dichlorofluorescein diacetate

DH:

Degree of hydrolysis

DMPO:

5,5-Dimethyl-1-pyrroline N-oxide

DPPH:

2,2-Diphenyl-1-picrylhydrazyl

DSHEA:

Dietary Supplements and Health Education Act

ECL:

Enhanced chemiluminescence

E:S:

Enzyme to substrate ratio

ESR:

Electron spin resonance

EFSA:

European Food Safety Authority

ET:

Electron transfer

EWH:

Egg white hydrolysate

EU:

European Union

FDA:

United States Food and Drug Administration

FOSHU:

Foods for specific health use

FPH:

Fish protein hydrolysate

FRAP:

Ferric reducing antioxidant power

GSH:

Glutathione

GPx:

Glutathione peroxidase

Gln:

Glutamine

Glu:

Glutamic acid

Gly:

Glycine

GSSG:

Oxidised glutathione

HAT:

Hydrogen atom transfer

HepG2:

Human hepatocarcinoma

His:

Histidine

OH˚:

Hydroxyl radical

H2O2 :

Hydrogen peroxide

Ile:

Isoleucine

Leu:

Leucine

Lys:

Lysine

MDA:

Malondialdehyde

Met:

Methionine

MTT:

3-(4,5-Dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide

NDA:

Dietetic products, nutrition and allergies

NLEA:

Nutrition Labeling and Education Act

NO:

Nitric oxide

NOX4:

NADPH 4 oxidase

ORAC:

Oxygen radical absorbance capacity assay

PAC:

Plasma antioxidant capacity

Phe:

Phenylalanine

Pro:

Proline

QSAR:

Quantitative structure activity relationship

RACI:

Relative antioxidant capacity index

ROO·:

Peroxyl radical

ROS:

Reactive oxygen species

RP-HPLC:

Reverse phase-high performance liquid chromatography

Ser:

Serine

SHR:

Spontaneously hypertensive rats

SOD:

Superoxide dismutase

SOSA:

Superoxide anion scavenging activity

O2·:

Superoxide radical

TAC:

Total antioxidant capacity

TBARS:

Thiobarbituric acid reactive substances

TEAC:

Trolox equivalent antioxidant capacity

Thr:

Threonine

TRAP:

Total radical trapping antioxidant potential

Trp:

Tryptophan

Tyr:

Tyrosine

UF:

Ultrafiltration

US:

United States

Val:

Valine

WPC:

Whey protein concentrate

WPI:

Whey protein isolate

References

  • Anon (1990) Nutrition Labeling and Education Act. United States

  • Anon (1997) FDA Modernization Act of 1997. United States, Food and Drug Administration United States

  • Anon (2006) Regulation (EC) No 1924/2006 of the European Parliament and of The Council of 20 December 2006 on Nutrition and Health Claims made on Foods. Off J Eur Union OJ L12:3–18

    Google Scholar 

  • Benzie I, Strain J (1996) The ferric reducing ability of plasma (FRAP) as a measure of “antioxidant power”: the FRAP assay. Anal Biochem 239(1):70–76

    Article  PubMed  CAS  Google Scholar 

  • Berger RG, Lunkenbein S, Ströhle A, Hahn A (2011) Antioxidants in food: mere myth or magic medicine? Crit Rev Food Sci 52(2):162–171

    Article  CAS  Google Scholar 

  • Berlett B, Stadtman E (1997) Protein oxidation in aging, disease, and oxidative stress. J Biol Chem 272(33):20313–20316

    Article  PubMed  CAS  Google Scholar 

  • Biorie Y, Dangin M, Gachon P, Vasson MP, Maubois JL, Beaufrere B (1997) Slow and fast dietary proteins differently modulate post-prandial protein accretion. Proc Natl Acad Sci 94(26):14930–14935

    Article  Google Scholar 

  • Boirie Y (2009) Physiopathological mechanism of sarcopenia. J Nutr Health Aging 13(8):717–723

    Article  PubMed  CAS  Google Scholar 

  • Bounous G (2000) Whey protein concentrate (WPC) and glutathione modulation in cancer treatment. Anticancer Res 20(6C):4785–4792

    Google Scholar 

  • Brand-Williams W, Cuvelier M, Berset C (1995) Use of a free radical method to evaluate antioxidant activity. LWT Food Sci Technol 28(1):25–30

    Article  CAS  Google Scholar 

  • Calbet J, Holst J (2004) Gastric emptying, gastric secretion and enterogastrone response after administration of milk proteins or their peptide hydrolysates in humans. Eur J Nutr 43(3):127–139

    Article  PubMed  CAS  Google Scholar 

  • Calliste C, Trouillas P, Allais D, Simon A, Duroux J-L (2001) Free radical scavenging activities measured by electron spin resonance spectroscopy and B16 cell antiproliferative behaviors of seven plants. J Agric Food Chem 49(7):3321–3327

    Article  PubMed  CAS  Google Scholar 

  • Cao G, Alessio HM, Cutler RG (1993) Oxygen-radical absorbance capacity assay for antioxidants. Free Radical Bio Med 14(3):303–311

    Article  CAS  Google Scholar 

  • Chan K, Decker EA, Feustman C (1994) Endogenous skeletal muscle antioxidants. Crit Rev Food Sci 34(4):403–426

    Article  CAS  Google Scholar 

  • Chapman I (2010) Obesity in old age. Front Horm Res 36:97–106

    Google Scholar 

  • Chaput J, Lord C, Cloutier M, Aubertin Leheudre M, Goulet E, Rousseau S, Khalil A, Dionne IJ (2007) Relationship between antioxidant intakes and class 1 sarcopenia in elderly men and women. J Nutr Health Aging 11(4):363–369

    PubMed  CAS  Google Scholar 

  • Chen HM, Muramoto K, Yamauchi F, Nokihara K (1996) Antioxidant activity of designed peptides based on the antioxidative peptide isolated from digests of a soybean protein. J Agric Food Chem 44(9):2619–2623

    Article  Google Scholar 

  • Chen HM, Muramoto K, Yamauchi F, Fujimoto K, Nokihara K (1998) Antioxidative properties of histidine-containing peptides designed from peptide fragments found in the digests of a soybean protein. J Agric Food Chem 46(1):49–53

    Article  PubMed  CAS  Google Scholar 

  • Cheung IWY, Cheung LKY, Tan NY, Li-Chan ECY (2012) The role of molecular size in antioxidant activity of peptide fractions from Pacific hake (Merluccius productus) hydrolysates. Food Chem 134(3):1297–1306

    Article  CAS  Google Scholar 

  • Chiu S, Kitts D (2003) Antioxidant characterization of caseinphosphopeptides from bovine milk. In: Shahidi F, Weerasinghe D (eds) Nutraceutical beverages: chemistry, nutrition and health effects. ACS Symposium Series, vol 871. Washington, DC, USA, pp 279–289

  • Clausen M, Skibsted L, Stagsted J (2009) Characterization of major radical scavenger species in bovine milk through size exclusion chromatography and functional assays. J Agric Food Chem 57(7):2912–2919

    Article  PubMed  CAS  Google Scholar 

  • Clemente A (2000) Enzymatic protein hydrolysates in human nutrition. Trends Food Sci Tech 11(7):254–262

    Article  CAS  Google Scholar 

  • Consumer Affairs Agency (2011) Food for Specific Health Use. Government of Japan. http://www.caa.go.jp/foods/index4.html. Accessed 14 Dec 2011

  • Contreras MdM, Hernández-Ledesma B, Amigo L, Martín-Álvarez PJ, Recio I (2011) Production of antioxidant hydrolyzates from a whey protein concentrate with thermolysin: optimization by response surface methodology. LWT Food Sci Technol 44(1):9–15

    Article  CAS  Google Scholar 

  • Davlos A, Migue M, Bartolom B (2004) Antioxidant activity of peptides derived from egg white proteins by enzymatic hydrolysis. J Food Protect 67(9):1939–1944

    Google Scholar 

  • Di Bernardini R, Rai DK, Bolton D, Kerry J, O’Neill E, Mullen AM, Harnedy P, Hayes M (2011) Isolation, purification and characterization of antioxidant peptidic fractions from a bovine liver sarcoplasmic protein thermolysin hydrolyzate. Peptides 32(2):388–400

    Article  PubMed  CAS  Google Scholar 

  • Díaz M, Decker E (2004) Antioxidant mechanisms of caseinophosphopeptides and casein hydrolysates and their application in ground beef. J Agric Food Chem 52(26):8208–8213

    Article  PubMed  CAS  Google Scholar 

  • Doherty TJ (2003) Invited review: aging and sarcopenia. J Appl Physiol 95(4):1717–1727

    PubMed  CAS  Google Scholar 

  • Donnelly JL, Decker EA, McClements DJ (1998) Iron-catalyzed oxidation of menhaden oil as affected by emulsifiers. J Food Sci 63(6):997–1000

    Article  CAS  Google Scholar 

  • Dröge W (2002) Free radicals in the physiological control of cell function. Physiol Rev 82(1):47–95

    PubMed  Google Scholar 

  • Dryáková A, Pihlanto A, Marnila P, Čurda L, Korhonen H (2010) Antioxidant properties of whey protein hydrolysates as measured by three methods. Eur Food Res Technol 230(6):865–874

    Article  CAS  Google Scholar 

  • Ebaid H, Salem A, Sayed A, Metwalli A (2011) Whey protein enhances normal inflammatory responses during cutaneous wound healing in diabetic rats. Lipids Health Dis 10(1):235

    Article  PubMed  Google Scholar 

  • EFSA Panel on Dietetic Products, Nutrition and Allergies (2010) Scientific opinion on the substantiation of health claims related to various food(s)/food constituent(s) and protection of cells from premature aging, antioxidant activity, antioxidant content and antioxidant properties, and protection of DNA, proteins and lipids from oxidative damage pursuant to Article 13(1) of Regulation (EC) No. 1924/20061. EFSA J 8(2):1489

    Google Scholar 

  • EFSA Panel on Dietetic Products, Nutrition and Allergies (2011a) Scientific Opinion on the substantiation of health claims related to a combination of lycopene, proanthocyanidins, vitamin C, vitamin E, selenium and beta-carotene and contribution to normal collagen formation (ID 1669) and protection of the skin from UV-induced damage (ID 1669) pursuant to Article 13(1) of Regulation (EC) No. 1924/2006. EFSA J 9(6):2239–2254

    Google Scholar 

  • EFSA Panel on Dietetic Products, Nutrition and Allergies (2011b) Scientific Opinion on the substantiation of health claims related to polyphenols in olive and protection of LDL particles from oxidative damage (ID 1333, 1638, 1639, 1696, 2865), maintenance of normal blood HDL cholesterol concentrations (ID 1639), maintenance of normal blood pressure (ID 3781), “anti-inflammatory properties” (ID 1882), “contributes to the upper respiratory tract health” (ID 3468), “can help to maintain a normal function of gastrointestinal tract” (3779), and “contributes to body defences against external agents” (ID 3467) pursuant to Article 13(1) of Regulation (EC) No. 1924/2006. EFSA J 9(4):2033–2058

    Google Scholar 

  • Elias R, Kellerby S, Decker EA (2008) Antioxidant activity of proteins and peptides. Crit Rev Food Sci 48(5):430–441

    Article  CAS  Google Scholar 

  • Ena JM, Van Beresteijn ECH, Robben A, Schmidt DG (1995) Whey protein antigenicity reduction by fungal proteinases and a pepsin/pancreatin combination. J Food Sci 60(1):104–110

    Article  CAS  Google Scholar 

  • Etzel MR (2004) Manufacture and use of dairy protein fractions. J Nutr 134(4):996S–1002S

    PubMed  CAS  Google Scholar 

  • European Food Safety Authority (2011) Article 13 Health Claims. http://www.efsa.europa.eu/. Accessed 20 Sept 2011

  • Faithong N, Benjakul S, Phatcharat S, Binsan W (2010) Chemical composition and antioxidative activity of Thai traditional fermented shrimp and krill products. Food Chem 119(1):133–140

    Article  CAS  Google Scholar 

  • Fernandez-Pachon M, Villano D, Troncoso AM, Garcia-Parrilla MC (2005) Antioxidant capacity of plasma after red wine intake in human volunteers. J Agric Food Chem 53(12):5024–5029

    Article  PubMed  CAS  Google Scholar 

  • Fernandez-Panchon M, Villano D, Troncoso AM, Garcia-Parrilla MC (2008) Antioxidant activity of phenolic compounds: from in vitro results to in vivo evidence. Crit Rev Food Sci 48(7):649–671

    Article  CAS  Google Scholar 

  • Finley J, Kong A, Hintze KJ, Jeffery EH, Ji LL, Lei XG (2011) Antioxidants in foods: state of the science important to the food industry. J Agric Food Chem 59(13):6837–6846

    Article  PubMed  CAS  Google Scholar 

  • FitzGerald RJ, Meisel H (2003) Milk protein hydrolysates and bioactive peptides. In: Fox PF, Mc Sweeney PLH (eds) Advanced dairy chemistry 1: proteins, 3rd edn. Kluwer Academic/Plenum Publishers, New York, pp 675–698

  • Food and Drug Administration (2003) Letter regarding dietary supplement health claim for antioxidant vitamins and risk of certain cancers. US Department of Health and Human Services. http://www.fda.gov/Food/LabelingNutrition/LabelClaims/QualifiedHealthClaims/ucm072789. Accessed 18 April 2012

  • Fox P, McSweeney P (2003) Proteins. In: Fox P, McSweeney P (eds) Advanced dairy chemistry, 3rd edn. Kluwer Academic/Plenum Publishers, New York, pp 146–238

    Google Scholar 

  • Frankel E, Meyer A (2000) The problems of using one-dimensional methods to evaluate multifunctional food and biological antioxidants. J Sci Food Agric 80(13):1925–1941

    Article  CAS  Google Scholar 

  • Frid AH, Nilsson M, Holst JJ, Björck IM (2005) Effect of whey on blood glucose and insulin responses to composite breakfast and lunch meals in type 2 diabetic subjects. Am J Clin Nutr 82(1):69–75

    PubMed  CAS  Google Scholar 

  • Furukawa S, Fujita T, Shimabukuro M, Iwaki M, Yamada Y, Nakajima Y, Nakayama O, Makishima M, Matsuda M, Shimomura I (2004) Increased oxidative stress in obesity and its impact on metabolic syndrome. J Clin Invest 114(12):1752–1761

    PubMed  CAS  Google Scholar 

  • Gad A, Khadrawy Y, El-Nekeety AA, Mohamed SR, Hassan NS, Abdel-Wahhab MA (2011) Antioxidant activity and hepatoprotective effects of whey protein and spirulina in rats. Nutrition 27(5):582–589

    Article  PubMed  CAS  Google Scholar 

  • Gardner M (1988) Gastrointestinal absorption of intact proteins. Annu Rev Nutr 8(1):329–350

    Article  PubMed  CAS  Google Scholar 

  • Gardner L, Michael G (1984) Intestinal assimilation of intact peptides and proteins from the diet: a neglected field. Biol Rev 59(3):289–331

    Article  PubMed  CAS  Google Scholar 

  • Ghiselli A, Serafini M, Maiani G, Azzini E, Ferro-Luzzi A (1995) A fluorescence-based method for measuring total plasma antioxidant capability. Free Radical Bio Med 18(1):29–36

    Article  CAS  Google Scholar 

  • Ghiselli A, Serafini M, Natella F, Scaccini C (2000) Total antioxidant capacity as a tool to assess redox status: critical view and experimental data. Free Radical Bio Med 29(11):1106–1114

    Article  CAS  Google Scholar 

  • Gilca M, Stoian I, Atanasiu V, Virgolici B (2007) The oxidative hypothesis of senescence. J Postgrad Med 53(3):207–213

    Article  PubMed  CAS  Google Scholar 

  • Gold P, Gustavo B, Kongshavn P (1993) Undenatured whey protein concentrate to improve active systemic humoral immune response. United States Patent, 5230902

  • Goldberg I (1994) Introduction. In: Goldberg I (ed) Functional foods; designer foods, pharmafoods, Nutraceuticals. Chapman and Hall, London, pp 3–16

    Google Scholar 

  • Grimble GK (1994) The significance of peptides in clinical nutrition. Annu Rev Nutr 14(1):419–447

    Article  PubMed  CAS  Google Scholar 

  • Guo H, Kouzuma Y, Yonekura M (2009) Structures and properties of antioxidative peptides derived from royal jelly protein. Food Chem 113(1):238–245

    Article  CAS  Google Scholar 

  • Halliwell B, Gutterridge J (1989) Free radicals in biology and medicine, 2nd edn. Oxford Clarendon Press, UK

  • Han X-Q, Parkin K, Lincourt R, Gao S (2002) Isolated antioxidant peptides from casein and methods for preparing, isolating and identifying antioxidant peptides. United States Patent, 6465432 B1

  • Haque E, Chand R, Kapila S (2009) Biofunctional properties of bioactive peptides of milk origin. Food Revs Int 25(1):28–43

    Article  CAS  Google Scholar 

  • Harman D (1956) Aging: a theory based on free radical and radiation chemistry. J Gerontol 11(3):298–300

    Article  PubMed  CAS  Google Scholar 

  • Harman D (2001) Aging: overview. Ann NY Acad Sci 928:1–21

    Article  PubMed  CAS  Google Scholar 

  • Haytowitz D, Bhagwat S (2010) USDA Database for the oxygen radical absorbance capacity (ORAC) of selected foods, release 2 United States Department of Agriculture. Accessed 10 Jan 2011

  • Hernandez-Ledesma B, Davalos A, Bartolome B, Amigo L (2005) Preparation of antioxidant enzymatic hydrolysates from alpha-lactalbumin and beta-lactoglobulin. Identification of active peptides by HPLC-MS/MS. J Agric Food Chem 53(3):588–593

    Article  PubMed  CAS  Google Scholar 

  • Hernández-Ledesma B, Quirós A, Amigo L, Recio I (2007) Identification of bioactive peptides after digestion of human milk and infant formula with pepsin and pancreatin. Int Dairy J 17(1):42–49

    Article  CAS  Google Scholar 

  • Himaya SWA, Ngo D-H, Ryu B, Kim S-K (2012) An active peptide purified from gastrointestinal enzyme hydrolysate of Pacific cod skin gelatin attenuates angiotensin-1 converting enzyme (ACE) activity and cellular oxidative stress. Food Chem 132(4):1872–1882

    Article  CAS  Google Scholar 

  • Hogan S, Zhang L, Li J, Wang H, Zhou K (2009) Development of antioxidant rich peptides from milk protein by microbial proteases and analysis of their effects on lipid peroxidation in cooked beef. Food Chem 117(3):438–443

    Article  CAS  Google Scholar 

  • Honzel D, Carter SG, Redman KA, Schauss AG, Endres JR, Jensen GS (2008) Comparison of chemical and cell-based antioxidant methods for evaluation of foods and natural products: generating multifaceted data by parallel testing using erythrocytes and polymorphonuclear cells. J Agric Food Chem 56(18):8319–8325

    Article  PubMed  CAS  Google Scholar 

  • Huang D, Ou B, Hampsch-Woodill M, Flanagan JA, Prior RL (2002) High-throughput assay of oxygen radical absorbance capacity (ORAC) using a multichannel liquid handling system coupled with a microplate fluorescence reader in 96-well format. J Agric Food Chem 50(16):4437–4444

    Article  PubMed  CAS  Google Scholar 

  • Huang D, Ou B, Prior RL (2005) The chemistry behind antioxidant capacity assays. J Agric Food Chem 53(6):1841–1856

    Article  PubMed  CAS  Google Scholar 

  • Hwang J, Shyu Y, Wang Y-T, Hsu C-K (2010) Antioxidative properties of protein hydrolysate from defatted peanut kernels treated with esperase. LWT Food Sci Technol 43(2):285–290

    Article  CAS  Google Scholar 

  • Irvine J, Takahashi L, Lockhart K, Cheong J, Tolan JW, Selick HE, Grove JR (1999) MDCK (Madin–Darby canine kidney) cells: a tool for membrane permeability screening. J Pharm Sci 88(1):28–33

    Article  PubMed  CAS  Google Scholar 

  • Jensen G, Wu X, Patterson KM, Barnes J, Carter SG, Scherwitz L, Beaman R, Endres JR, Schauss AG (2008) In vitro and in vivo antioxidant and anti-inflammatory capacities of an antioxidant-rich fruit and berry juice blend. Results of a pilot and randomized, double-blinded, placebo-controlled, crossover study. J Agric Food Chem 56(18):8326–8333

    Article  PubMed  CAS  Google Scholar 

  • Jun S, Park P, Jung W-K, Kim S-K (2004) Purification and characterization of an antioxidative peptide from enzymatic hydrolysate of yellowfin sole (Limanda aspera) frame protein. Eur Food Res Technol 219(1):20–26

    Article  CAS  Google Scholar 

  • Keohane P, Grimble G, Brown B, Spiller RC, Silk DB (1985) Influence of protein composition and hydrolysis method on intestinal absorption of protein in man. Gut 26(9):907–913

    Article  PubMed  CAS  Google Scholar 

  • Khalil A, Gaudreau P, Cherki M, Wagner R, Tessier DM, Fulop T, Shatenstein B (2011) Antioxidant-rich food intakes and their association with blood total antioxidant status and vitamin C and E levels in community-dwelling seniors from the Quebec longitudinal study NuAge. Exp Gerontol 46(6):475–481

    Article  PubMed  CAS  Google Scholar 

  • Kim G-N, Jang H-D, Kim C-I (2007a) Antioxidant capacity of caseinophosphopeptides prepared from sodium caseinate using alcalase. Food Chem 104(4):1359–1365

    Article  CAS  Google Scholar 

  • Kim SY, Je JY, Kim S-K (2007b) Purification and characterization of antioxidant peptide from hoki (Johnius belengerii) frame protein by gastrointestinal digestion. J Nutr Biochem 18(1):31–38

    Article  PubMed  CAS  Google Scholar 

  • Kinsella K, Velkoff V (2001) An aging world: 2001, vol 1. United States Government Printing Office, Washington, DC. http://www.census.gov/prod/2001pubs/p95-01-1.pdf

  • Kitts D (2005) Antioxidant properties of casein-phosphopeptides. Trends Food Sci Technol 16(12):549–554

    Article  CAS  Google Scholar 

  • Kitts D, Weiler K (2003) Bioactive proteins and peptides from food sources. Applications of bioprocesses used in isolation and recovery. Curr Pharm Design 9(16):1309–1323

    Google Scholar 

  • Korhonen H, Pihlanto A (2006) Bioactive peptides: production and functionality. Int Dairy J 16(9):945–960

    Article  CAS  Google Scholar 

  • Kregel K, Zhang H (2007) An integrated view of oxidative stress in aging: basic mechanisms, functional effects, and pathological considerations. Am J Physiol Regul Integr Comp Physiol 292(1):R18–R36

    Article  PubMed  CAS  Google Scholar 

  • Laakso S (1984) Inhibition of lipid peroxidation by casein Evidence of molecular encapsulation of 1,4-pentadiene fatty acids. BBA-Lipid Lipid Met 792(1):11–15

    Article  CAS  Google Scholar 

  • Laguerre M, Lecomte J, Villeneuve P (2007) Evaluation of the ability of antioxidants to counteract lipid oxidation: existing methods, new trends and challenges. Prog Lipid Res 46(5):244–282

    Article  PubMed  CAS  Google Scholar 

  • Lalor F, Kennedy J, Flynn M, Wall P (2010) A study of nutrition and health claims—a snapshot of what’s on the Irish market. Public Health Nutr 13(05):704–711

    Article  PubMed  Google Scholar 

  • Li Y-W, Li B, He J, Qian P (2011) Structure–activity relationship study of antioxidative peptides by QSAR modeling: the amino acid next to C-terminus affects the activity. J Pept Sci 17(6):454–462

    Article  PubMed  CAS  Google Scholar 

  • Liu R, Wang M, Duan J, Guo J, Tang Y (2010) Purification and identification of three novel antioxidant peptides from Cornu Bubali (water buffalo horn). Peptides 31(5):786–793

    Article  PubMed  CAS  Google Scholar 

  • Magalhães LM, Segundo MA, Reis S, Lima JLFC (2008) Methodological aspects about in vitro evaluation of antioxidant properties. Anal Chim Acta 613(1):1–19

    Article  PubMed  CAS  Google Scholar 

  • Mallee L, Nimmagudda R, Boumans J (2003) Cysteine/glycine rich peptides. United States Patent, 6620778 B2

  • Manso MA, Miguel M, Even J, Hernández R, Aleixandre A, López-Fandiño R (2008) Effect of the long-term intake of an egg white hydrolysate on the oxidative status and blood lipid profile of spontaneously hypertensive rats. Food Chem 109(2):361–367

    Article  CAS  Google Scholar 

  • Mao X-Y, Cheng X, Wang X, Wu S-J (2011) Free-radical-scavenging and anti-inflammatory effect of yak milk casein before and after enzymatic hydrolysis. Food Chem 126(2):484–490

    Article  CAS  Google Scholar 

  • Marchbank T, Limdi JK, Mahmood A, Elia G, Playford RJ (2008) Clinical trial: protective effect of a commercial fish protein hydrolysate against indomethacin (NSAID)-induced small intestinal injury. Aliment Pharmacol Ther 28(6):799–804

    Article  PubMed  CAS  Google Scholar 

  • Maritim AC, Sanders RA, Watkins JB (2003) Diabetes, oxidative stress, and antioxidants: a review. J Biochem Mol Toxic 17(1):24–38

    Article  CAS  Google Scholar 

  • Marzani B, Balage M, Vénien A, Astruc T, Papet I, Dardevet D, Mosoni L (2008) Antioxidant supplementation restores defective leucine stimulation of protein synthesis in skeletal muscle from old rats. J Nutr 138(11):2205–2211

    Article  PubMed  CAS  Google Scholar 

  • Maxwell SRJ (2000) Measurement of plasma antioxidant activity. In: Lunec J, Griffiths H (eds) Measuring in vivo oxidative damage—a practical approach. Wiley, Chichester, pp 143–167

    Google Scholar 

  • McIntosh G, Regester G, Le Leu RK, Royle PJ, Smithers GW (1995) Dairy proteins protect against dimethylhydrazine-induced intestinal cancers in rats. J Nutr 125(4):809–816

    PubMed  CAS  Google Scholar 

  • Megías C, Pedroche J, Yust MM, Girón-Calle J, Alaiz M, Millán F, Vioque J (2007) Affinity purification of copper chelating peptides from chickpea protein hydrolysates. J Agric Food Chem 55(10):3949–3954

    Article  PubMed  CAS  Google Scholar 

  • Megías C, Pedroche J, Yust MM, Girón-Calle J, Alaiz M, Millán F, Vioque J (2008) Production of copper-chelating peptides after hydrolysis of sunflower proteins with pepsin and pancreatin. LWT Food Sci Technol 41(10):1973–1977

    Article  CAS  Google Scholar 

  • Meisel H (1998) Overview on milk protein-derived peptides. Int Dairy J 8(5–6):363–373

    Article  CAS  Google Scholar 

  • Meisel H (2004) Multifunctional peptides encrypted in milk proteins. BioFactors 21(1–4):55–61

    Article  PubMed  CAS  Google Scholar 

  • Mendoza-Núñez V, Ruiz-Ramos M, Sánchez-Rodríguez M, Retana-Ugalde R, Muñoz-Sánchez J (2007) Aging-related oxidative stress in healthy humans. Tohoku J Exp Med 213(3):261–268

    Article  PubMed  Google Scholar 

  • Miller NJ, Rice-Evans C, Davies MJ, Gopinathan V, Milner A (1993) A novel method for measuring antioxidant capacity and its application to monitoring the antioxidant status in premature neonates. Clin Sci 84(4):407–412

    PubMed  CAS  Google Scholar 

  • Ministry of Agriculture Fisheries and Food (2011) Food for Specific Health Use, Health Claims. http://www.maff.go.jp/e/index.html. Accessed 23 April 2012

  • Mintel (2009) Global new product database, Mintel Group Ltd. Accessed 12 April 2012

  • Moughan PJ, Cranwell PD, Smith WC (1991) An evaluation with piglets of bovine milk, hydrolysed bovine milk and isolated soybean proteins included in infant milk formulas. 2. Stomach-emptying rate and the postprandial change in gastric pH and milk-clotting enzyme activity. J Pediatr Gastroenterol Nutr 12:253–259

    Article  PubMed  CAS  Google Scholar 

  • Moure A, Domínguez H, Parajó JC (2006) Antioxidant properties of ultrafiltration-recovered soy protein fractions from industrial effluents and their hydrolysates. Process Biochem 41(2):447–456

    Article  CAS  Google Scholar 

  • Murase H, Nagao A, Terao J (1993) Antioxidant and emulsifying activity of N-(long-chain-acyl)histidine and N-(long-chain-acyl)carnosine. J Agric Food Chem 41(10):1601–1604

    Article  CAS  Google Scholar 

  • Murray BA, FitzGerald RJ (2007) Angiotensin converting enzyme inhibitory peptides derived from food proteins: biochemistry, bioactivity and production. Curr Pharma Design 13:773–791

    Article  CAS  Google Scholar 

  • Neklyudov AD, Ivankin AN, Berdutina AV (2000) Production and purification of protein hydrolysates (Review). Appl Biochem Micro 36(4):317–324

    Article  Google Scholar 

  • Ou B, Hampsch-Woodill M, Prior R (2001) Development and validation of an improved oxygen radical absorbance capacity assay using fluorescein as the fluorescent probe. J Agric Food Chem 49(10):4619–4626

    Article  PubMed  CAS  Google Scholar 

  • Packer J, Slater T, Willson RL (1979) Direct observation of a free radical interaction between vitamin E and vitamin C. Nature 278(5706):737–738

    Article  PubMed  CAS  Google Scholar 

  • Paddon-Jones D, Short K, Campbell WW, Volpi E, Wolfe RR (2008) Role of dietary protein in the sarcopenia of aging. Am J Clin Nutr 87(5):1562S–1566S

    PubMed  CAS  Google Scholar 

  • Pan D, Guo Y, Jiang X (2011) Anti-fatigue and antioxidative activities of peptides isolated from milk proteins. J Food Biochem 35(4):1130–1144

    Article  CAS  Google Scholar 

  • Panyam D, Kilara A (1996) Enhancing the functionality of food proteins by enzymatic modification. Trends Food Sci Tech 7(4):120–125

    Article  CAS  Google Scholar 

  • Park S, Lee J, Baek H-H, Lee HG (2010) Purification and characterisation of antioxidant peptides from soy protein hydrolysate. J Food Biochem 34:120–132

    Article  Google Scholar 

  • Pena-Ramos E, Xiong YL (2001) Antioxidative activity of whey protein hydrolysates in a liposomal system1. J Diary Sci 84(12):2577–2583

    Article  CAS  Google Scholar 

  • Peña-Ramos E, Xiong Y, Arteaga GE (2004) Fractionation and characterisation for antioxidant activity of hydrolysed whey protein. J Sci Food Agric 84:1908–1918

    Article  CAS  Google Scholar 

  • Peng X, Xiong Y, Kong B (2009) Antioxidant activity of peptide fractions from whey protein hydrolysates as measured by electron spin resonance. Food Chem 113(1):196–201

    Article  CAS  Google Scholar 

  • Peng X, Kong B, Xia X, Liu Q (2010) Reducing and radical-scavenging activities of whey protein hydrolysates prepared with alcalase. Int Dairy J 20(5):360–365

    Article  CAS  Google Scholar 

  • Phelan M, Aherne-Bruce A, O’Sullivan D, FitzGerald RJ, O’Brien NM (2009) Potential bioactive effects of casein hydrolysates on human cultured cells. Int Dairy J 19(5):279–285

    Article  CAS  Google Scholar 

  • Pihlanto A (2006) Antioxidative peptides derived from milk proteins. Int Dairy J 16(11):1306–1314

    Article  CAS  Google Scholar 

  • Power O, Hallihan A, Jakeman P (2009) Human insulinotropic response to oral ingestion of native and hydrolysed whey protein. Amino Acids 37(2):333–339

    Article  PubMed  CAS  Google Scholar 

  • Powers SK, Jackson MJ (2008) Exercise-induced oxidative stress: cellular mechanisms and impact on muscle force production. Physiol Rev 88(4):1243–1276

    Article  PubMed  CAS  Google Scholar 

  • Prior RL, Hoang H, Gu L, Wu X, Bacchiocca M, Howard L, Hampsch-Woodill M, Huang D, Ou B, Jacob R (2003) Assays for hydrophilic and lipophilic antioxidant capacity (oxygen radical absorbance capacity (ORACFL)) of plasma and other biological and food samples. J Agric Food Chem 51(11):3273–3279

    Article  PubMed  CAS  Google Scholar 

  • Prior RL, Wu X, Schaich K (2005) Standardized methods for the determination of antioxidant capacity and phenolics in foods and dietary supplements. J Agric Food Chem 53(10):4290–4302

    Article  PubMed  CAS  Google Scholar 

  • Prior RL, Gu L, Wu X, Jacob RA, Sotoudeh G, Kader AA, Cook RA (2007) Plasma antioxidant capacity changes following a meal as a measure of the ability of a food to alter in vivo antioxidant status. J Am Coll Nutr 26(2):170–181

    PubMed  CAS  Google Scholar 

  • Psaltopoulou T, Panagiotakos DB, Pitsavos C, Chrysochoou C, Detopoulou P, Skoumas J, Stefanadis C (2011) Dietary antioxidant capacity is inversely associated with diabetes biomarkers: the ATTICA study. Nutr Metab Cardiovasc 21(8):561–567

    Article  CAS  Google Scholar 

  • Qian Z-J, Jung W-K, Kim S-K (2008) Free radical scavenging activity of a novel antioxidative peptide purified from hydrolysate of bullfrog skin, Rana catesbeiana Shaw. Bioresour Technol 99(6):1690–1698

    Article  PubMed  CAS  Google Scholar 

  • Rajapakse N, Mendis E, Byun H-G, Kim S-K (2005a) Purification and in vitro antioxidative effects of giant squid muscle peptides on free radical-mediated oxidative systems. J Nutr Biochem 16(9):562–569

    Article  PubMed  CAS  Google Scholar 

  • Rajapakse N, Mendis E, Jung W-K, Je J-Y, Kim S-K (2005b) Purification of a radical scavenging peptide from fermented mussel sauce and its antioxidant properties. Food Res Int 38(2):175–182

    Article  CAS  Google Scholar 

  • Rao S, Sun J, Liu Y, Zeng H, Su Y, Yang Y (2012) ACE inhibitory peptides and antioxidant peptides derived from in vitro digestion hydrolysate of hen egg white lysozyme. Food Chem. doi:10.1016/j.foodchem.2012.05.059(0)

    Google Scholar 

  • Re R, Pellegrini N, Proteggente A, Pannala A, Yang M, Rice-Evans C (1999) Antioxidant activity applying an improved ABTS radical cation decolorization assay. Free Radical Bio Med 26(9–10):1231–1237

    Article  CAS  Google Scholar 

  • Rival S, Boeriu C, Wichers HJ (2001) Caseins and casein hydrolysates. 2. Antioxidative properties and relevance to lipoxygenase inhibition. J Agric Food Chem 49(1):295–302

    Article  PubMed  CAS  Google Scholar 

  • Rizvi SI, Rashmi J, Maurya PK (2006) Erythrocyte plasma membrane redox system in human aging. Rejuv Res 9(4):470–474

    Article  CAS  Google Scholar 

  • Roberfroid MB (2000) Concepts and strategy of functional food science: the European perspective. Am J Clin Nutr 71(6):1660S–1664S

    PubMed  CAS  Google Scholar 

  • Robinson EE, Maxwell SRJ, Thorpe GHG (1997) An investigation of the antioxidant activity of black tea using enhanced chemiluminescence. Free Radical Res 26(3):291–302

    Article  CAS  Google Scholar 

  • Rubas W, Grass GM (1991) Gastrointestinal lymphatic absorption of peptides and proteins. Adv Drug Deliv Rev 7(1):15–69

    Article  CAS  Google Scholar 

  • Saito K, Jin D-H, Ogawa T, Muramoto K, Hatakeyama E, Yasuhara T, Nokihara K (2003) Antioxidative properties of tripeptide libraries prepared by the combinatorial chemistry. J Agric Food Chem 51(12):3668–3674

    Article  PubMed  CAS  Google Scholar 

  • Salami M, Moosavi-Movahedi AA, Ehsani MR, Yousefi R, Haertlé T, Chobert J-M, Razavi SH, Henrich R, Balalaie S, Ebadi SA, Pourtakdoost S, Niasari-Naslaji A (2010) Improvement of the antimicrobial and antioxidant activities of camel and bovine whey proteins by limited proteolysis. J Agric Food Chem 58(6):3297–3302

    Google Scholar 

  • Samaranayaka A, Kitts D, Li-Chan ECY (2010) Antioxidative and angiotensin-I-converting enzyme inhibitory potential of a pacific hake (Merluccius productus) fish protein hydrolysate subjected to simulated gastrointestinal digestion and Caco-2 cell permeation. J Agric Food Chem 58(3):1535–1542

    Article  PubMed  CAS  Google Scholar 

  • Sarmadi BH, Ismail A (2010) Antioxidative peptides from food proteins: a review. Peptides 31(10):1949–1956

    Article  PubMed  CAS  Google Scholar 

  • Seeram NP, Aviram M, Zhang Y, Henning SM, Feng L, Dreher M, Heber D (2008) Comparison of antioxidant potency of commonly consumed polyphenol-rich beverages in the United States. J Agric Food Chem 56(4):1415–1422

    Article  PubMed  CAS  Google Scholar 

  • Segura-Campos M, Chel-Guerrero L, Betancur-Ancona D, Hernandez-Escalante VM (2011) Bioavailability of bioactive peptides. Food Revs Int 27(3):213–226

    Article  CAS  Google Scholar 

  • Semba RD, Lauretani F, Ferrucci L (2007) Carotenoids as protection against sarcopenia in older adults. Arch Biochem Biophys 458(2):141–145

    Article  PubMed  CAS  Google Scholar 

  • Seo HS, Kwak S, Lee Y-S (2010) Antioxidative activities of histidine containing caffeic acid-dipeptides. Bioorgan Med Chem 20(14):4266–4272

    CAS  Google Scholar 

  • Sharp JS, Becker JM, Hettich RL (2003) Analysis of protein solvent accessible surfaces by photochemical oxidation and mass spectrometry. Anal Chem 76(3):672–683

    Article  CAS  Google Scholar 

  • Sheih IC, Wu TK, Fang TJ (2009) Antioxidant properties of a new antioxidative peptide from algae protein waste hydrolysate in different oxidation systems. Bioresource Technol 100(13):3419–3425

    Article  CAS  Google Scholar 

  • Shimizu T (2003) Health claims on functional foods: the Japanese regulations and an international comparison. Nutr Res Rev 16(02):241–252

    Article  PubMed  Google Scholar 

  • Shimizu M (2004) Food-derived peptides and intestinal functions. BioFactors 21(1–4):43–47

    Article  PubMed  CAS  Google Scholar 

  • Silk D, Hegarty J, Fairclough P, Clark M (1982) Characterisation and nutritional significance of peptide transport in man. Ann Nutr Metab 26(6):337–352

    Article  PubMed  CAS  Google Scholar 

  • Silvestre MPC (1997) Review of methods for the analysis of protein hydrolysates. Food Chem 60(2):263–271

    Article  CAS  Google Scholar 

  • Slattery H, FitzGerald RJ (1998) Functional properties and bitterness of sodium caseinate hydrolysates prepared with a bacillus proteinase. J Food Sci 63(3):418–422

    Article  CAS  Google Scholar 

  • Spanier G, Xu HXN, Tobias S, Deng S, Wojnowski L, Forstermann U, Li H (2009) Resveratrol reduces endothelial oxidative stress by modulating the gene expression of superoxide dismutase 1 (SOD1), glutathione peroxidase 1 (GPx1) and NADPH oxidase subunit (NOX4). J Physiol Pharmacol 60(4):111–116

    PubMed  Google Scholar 

  • Sprong R, Dudek S, Taylor F (2008) Cysteine rich peptides for improving thiol homeostatis. United States Patent, US 2008/0032915 A1

  • Stein CJ, Colditz GA (2004) The epidemic of obesity. J Clin Endocr Metab 89(6):2522–2525

    Article  PubMed  CAS  Google Scholar 

  • Suetsuna K, Ukeda H, Ochi H (2000) Isolation and characterization of free radical scavenging activities peptides derived from casein. J Nutr Biochem 11(3):128–131

    Article  PubMed  CAS  Google Scholar 

  • Sun T, Tanumihardjo SA (2007) An integrated approach to evaluate food antioxidant capacity. J Food Sci 72(9):R159–R165

    Article  PubMed  CAS  Google Scholar 

  • Sun J, He H, Xie BJ (2004) Novel antioxidant peptides from fermented mushroom Ganoderma lucidum. J Agric Food Chem 52(21):6646–6652

    Article  PubMed  CAS  Google Scholar 

  • Swaisgood HE (1992) Chemistry of caseins. In: Fox PF, McSweeney PLH (eds) Advanced dairy chemistry, vol 1., 3rd ednKluwer Academic/Plenum Publishers, New York, pp 139–187

    Google Scholar 

  • Tang X, Zhiyong H, Yanfeng D, Xiong YL, Xie M, Chen J (2010) Peptide fractionation and free radical scavenging activity of zein hydrolysate. J Agric Food Chem 58(1):587–593

    Article  PubMed  CAS  Google Scholar 

  • Tapsell L, Williams P, Droulez V, Southee D, Patch C, Lethbridge A (2005) Functional foods for the Australian industry: definitions and opportunities. Wollongong

  • Tominta M, Schimamura S (1998) Antioxidant. United States Patent, 5804555

  • Tong LM, Sasaki S, McClements DJ, Decker EA (2000) Mechanisms of the antioxidant activity of a high molecular weight fraction of whey. J Agric Food Chem 48(5):1473–1478

    Article  PubMed  CAS  Google Scholar 

  • Tsopmo A, Diehl-Jones BW, Aluko RE, Kitts DD, Elisa I, Friel JK (2009) Tryptophan released from mother’s milk has antioxidant properties. Pediatr Res 66(6):614–618

    Article  PubMed  CAS  Google Scholar 

  • Wachtel-Galor S, Szeto YT, Tomlinson B, Benzie I (2004a) Ganoderma lucidum (‘Lingzhi’): acute and short-term biomarker response to supplementation. Int J Food Sci Nutr 55(1):75–83

    Article  PubMed  Google Scholar 

  • Wachtel-Galor S, Tomlinson B, Benzie IFF (2004b) Ganoderma lucidum (‘Lingzhi’), a Chinese medicinal mushroom: biomarker responses in a controlled human supplementation study. Brit J Nutr 91:263–269

    Article  PubMed  CAS  Google Scholar 

  • Walsh DJ, Bernard H, Murray BA, MacDonald J, Pentzien A-K, Wright GA, Wal J-M, Struthers AD, Meisel H, FitzGerald RJ (2004) In vitro generation and stability of the lactokinin beta-lactoglobulin fragment (142–148). J Diary Sci 87(11):3845–3857

    Article  CAS  Google Scholar 

  • Walzem RL, Dillard CJ, German JB (2002) Whey components: millennia of evolution create functionalities for mammalian nutrition: what we know and what we may be overlooking. Crit Rev Food Sci 42(4):353–375

    Article  CAS  Google Scholar 

  • Wang D, Wang LJ, F-x Zhu, J-y Zhu, Chen XD, Zou L, Saito M, L-t Li (2008) In vitro and in vivo studies on the antioxidant activities of the aqueous extracts of Douchi (a traditional Chinese salt-fermented soybean food). Food Chem 107(4):1421–1428

    Article  CAS  Google Scholar 

  • Wang Y, Zhu F, Chen J, Han F, Wang H (2009) Effects of Pro-Arg, a novel dipeptide derived from protamine hydrolysate on H2O2-induced oxidative stress in human diploid fibroblasts. Biol Pharm Bull 32:389–393

    Article  PubMed  CAS  Google Scholar 

  • Wayner D, Burton G, Ingold KU, Locke S (1985) Quantitative measurement of the total, peroxyl radical-trapping antioxidant capability of human blood plasma by controlled peroxidation: the important contribution made by plasma proteins. FEBS Lett 187(1):33–37

    Article  PubMed  CAS  Google Scholar 

  • Wayner D, Burton G, Ingold KU, Barclay LRC, Locke SJ (1987) The relative contributions of vitamin E, urate, ascorbate and proteins to the total peroxyl radical-trapping antioxidant activity of human blood plasma. Biochim Biophys Acta 924(3):408–419

    Article  PubMed  CAS  Google Scholar 

  • Webb KE (1990) Intestinal absorption of protein hydrolysis products: a review. J Anim Sci 68(9):3011–3022

    PubMed  CAS  Google Scholar 

  • Whitehead TP, Robinson D, Allaway S, Syms J, Hale A (1995) Effect of red wine ingestion on the antioxidant capacity of serum. Clin Chem 41(1):32–35

    PubMed  CAS  Google Scholar 

  • Wolfe KL, Liu RH (2007) Cellular antioxidant activity (CAA) assay for assessing antioxidants, foods, and dietary supplements. J Agric Food Chem 55(22):8896–8907

    Article  PubMed  CAS  Google Scholar 

  • Wouters-Wesseling W, Wagenaar L, de Groot L, Bindels J, van Staveren W (2003) Biochemical antioxidant levels respond to supplementation with an enriched drink in frail elderly people. J Am Coll Nutr 22(3):232–238

    PubMed  CAS  Google Scholar 

  • Wu G, Fang Y-Z, Yang S, Lupton JR, Turner ND (2004) Glutathione metabolism and its implications for health. J Nutr 134(3):489–492

    PubMed  CAS  Google Scholar 

  • Xie Z, Huang J, Xu X, Jin Z (2008) Antioxidant activity of peptides isolated from alfalfa leaf protein hydrolysate. Food Chem 111(2):370–376

    Article  CAS  Google Scholar 

  • Xiong YL (2010) Antioxidant Peptides. In: Mine Y, Li-Chan E (eds) Bioactive Proteins and Peptides as Functional Foods and Nutraceuticals, vol 1. Blackwell Publishing Iowa, USA, pp 29–42

    Chapter  Google Scholar 

  • Young D, Nau F, Pasco M, Mine Y (2011) Identification of hen egg yolk-derived phosvitin phosphopeptides and their effects on gene expression profiling against oxidative stress-induced Caco-2 cells. J Agric Food Chem 59(17):9207–9218

    Article  PubMed  CAS  Google Scholar 

  • Yu L, Cheng Z (2008) Application of electron spin resonance (ESR) spectrometry in nutraceutical and food research. Mol Nutr Food Res 52(1):62–78

    Article  PubMed  CAS  Google Scholar 

  • Yust MdM, Millán-Linares MdC, Alcaide-Hidalgo JM, Millán F, Pedroche J (2012) Hypocholesterolaemic and antioxidant activities of chickpea (Cicer arietinum L.) protein hydrolysates. J Sci Food Agric 92(9):1994–2001

    Google Scholar 

  • Zavorsky GS, Kubow S, Grey V, Riverin V, Lands LC (2007) An open-label dose–response study of lymphocyte glutathione levels in healthy men and women receiving pressurized whey protein isolate supplements. Int J Food Sci Nutr 58(6):429–436

    Article  PubMed  CAS  Google Scholar 

  • Zhang J, Zhang H, Wang L, Guo X, Wang X, Yao H (2010) Isolation and identification of antioxidative peptides from rice endosperm protein enzymatic hydrolysate by consecutive chromatography and MALDI-TOF/TOF MS/MS. Food Chem 119(1):226–234

    Article  CAS  Google Scholar 

  • Zhu L, Chen J, Tang X, Xiong YL (2008) Reducing, radical scavenging, and chelation properties of in vitro digests of alcalase-treated zein hydrolysate. J Agric Food Chem 56(8):2714–2721

    Article  PubMed  CAS  Google Scholar 

  • Ziv E, Bendayan M (2000) Intestinal absorption of peptides through the enterocytes. Microsc Res Tech 49(4):346–352

    Article  PubMed  CAS  Google Scholar 

  • Zulueta A, Esteve MJ, Frígola A (2009) ORAC and TEAC assays comparison to measure the antioxidant capacity of food products. Food Chem 114(1):310–316

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors wish to acknowledge Dr. Fiona Lalor, Food for Health Ireland, School of Public Health and Population Science, University College Dublin for her helpful discussion and guidance on international regulatory requirements for functional foods. This research was supported by Enterprise Ireland under Grant Number CC20080001.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to R. J. FitzGerald.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Power, O., Jakeman, P. & FitzGerald, R.J. Antioxidative peptides: enzymatic production, in vitro and in vivo antioxidant activity and potential applications of milk-derived antioxidative peptides. Amino Acids 44, 797–820 (2013). https://doi.org/10.1007/s00726-012-1393-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00726-012-1393-9

Keywords

Navigation