Skip to main content
Log in

An Estimate of Divergence Time of Parazoa and Eumetazoa and That of Cephalochordata and Vertebrata by Aldolase and Triose Phosphate Isomerase Clocks

  • Published:
Journal of Molecular Evolution Aims and scope Submit manuscript

Abstract

Previously we suggested that four proteins including aldolase and triose phosphate isomerase (TPI) evolved with approximately constant rates over long periods covering the whole animal phyla. The constant rates of aldolase and TPI evolution were reexamined based on three different models for estimating evolutionary distances. It was shown that the evolutionary rates remain essentially unchanged in comparisons not only between different classes of vertebrates but also between vertebrates and arthropods and even between animals and plants, irrespective of the models used. Thus these enzymes might be useful molecular clocks for inferring divergence times of animal phyla. To know the divergence time of Parazoa and Eumetazoa and that of Cephalochordata and Vertebrata, the aldolase cDNAs from Ephydatia fluviatilis, a freshwater sponge, and the TPI cDNAs from Ephydatia fluviatilis and Branchiostoma belcheri, an amphioxus, have been cloned and se-quenced. Comparisons of the deduced amino acid sequences of aldolase and TPI from the freshwater sponge with known sequences revealed that the Parazoa-Eumetazoa split occurred about 940 million years ago (Ma) as determined by the average of two proteins and three models. Similarly, the aldolase and TPI clocks suggest that vertebrates and amphioxus last shared a common ancestor around 700 Ma and they possibly diverged shortly after the divergence of deuterostomes and protostomes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  • Adachi J, Hasegawa M (1992) Computer science monographs, No. 27, MOLPHY: programs for molecular phylogenetics, I. PROTML: maximum likelihood inference of protein phylogeny. The Institute of Statistical Mathematics, Tokyo

    Google Scholar 

  • Adachi J, Cao Y, Hasegawa M (1993) Tempo and mode of mitochon- drial DNA evolution in vertebrates at the amino acid sequence level: rapid evolution in warm-blooded vertebrates. J Mol Evol 36: 270–281

    Article  PubMed  CAS  Google Scholar 

  • Alber T, Banner DW, Bloomer AC, Petsko GA, Phillios D, Rivers PS, Wilson IA (1991) On the three-dimensional structure and catalytic mechanism of triose phosphate isomerase. Philos Trans R Soc Lond Biol 293: 153–171

    Google Scholar 

  • Berger MP, Munson PJ (1991) A novel randomized iterative strategy for aligning multiple protein sequences. Comput Appl Biosci 7: 479–484

    PubMed  CAS  Google Scholar 

  • Britten RJ (1986) Rates of DNA sequence evolution differ between taxonomic groups. Science 231: 1393–1398

    Article  PubMed  CAS  Google Scholar 

  • Conway Morris S (1993) The fossil record and the early evolution of the Metazoa. Nature 361: 219–225

    Article  Google Scholar 

  • Davidson EH, Peterson KJ, Cameron RA (1995) Origin of bilaterian body plans: evolution of developmental regulatory mechanisms. Science 270: 1319–1325

    Article  PubMed  CAS  Google Scholar 

  • Dayhoff MO (1978) Survey of new data and computer methods of analysis. In: Dayhoff MO (ed) Atlas of protein sequence and structure, vol 5, suppl 3. National Biochemical Research Foundation, Washington, DC, pp 1–8

    Google Scholar 

  • Dickerson RE (1971) The structures of cytochrome c and the rates of molecular evolution. J Mol Evol 1: 26–45

    Article  PubMed  CAS  Google Scholar 

  • Dickerson RE, Geis I (1983) Hemoglobin. Benjamin/Cummings, Menlo Park, CA

    Google Scholar 

  • Doolittle RF, Feng DF, Tsang S, Cho G, Little E (1996) Determining divergence times of the major kingdoms of living organisms with a protein clock. Science 271: 470–477

    Article  PubMed  CAS  Google Scholar 

  • Felsenstein J (1985) Confidence limits on phylogenies: an approach using the bootstrap. Evolution 39: 783–791

    Article  Google Scholar 

  • Frohman MA, Dush MK, Martin GR (1988) Rapid production of full- length cDNAs from rare transcripts: amplification using a single gene-specific oligonucleotide primer. Proc Natl Acad Sci USA 85: 8998–9002

    Article  PubMed  CAS  Google Scholar 

  • Gamblin SJ, Davies GJ, Grimes JM, Jackson RM, Littlechild JA, Watson HC (1991) Activity and specificity of human aldolases. J Mol Biol 219: 573–576

    Article  PubMed  CAS  Google Scholar 

  • Grishin NV (1995) Estimation of the number of amino acid substitutions per site when the substitution rate varies among sites. J Mol Evol 41: 675–679

    Article  PubMed  CAS  Google Scholar 

  • Hasegawa M, Kishino H, Yano T (1987) Man’s place in Hominoidea as inferred from molecular clocks of DNA. J Mol Evol 26: 132–147

    Article  PubMed  CAS  Google Scholar 

  • Hashimoto T, Nakamura Y, Nakamura F, Shirakura T, Adachi J, Goto N, Okamoto K, Hasegawa M (1994) Protein phylogeny gives a robust estimation for early divergences of eukaryotes: phylogenetic place of a mitochondria-lacking protozoan, Giardia lamblia. Mol Biol Evol 11: 65–71

    PubMed  CAS  Google Scholar 

  • Han TH, Runnegar B (1992) Megascopic eukaryotic algae from the 2.1-billion-year-old Negaunee iron-formation, Michigan. Science 257: 232–235

    Article  PubMed  CAS  Google Scholar 

  • Horecker BL, Tsolas O, Lai CY (1972) Aldolases. In: Boyer PD (ed) The enzymes, vol 7.Academic Press, New York, pp 213–258

    Google Scholar 

  • Iwabe N, Kuma K, Nikoh N, Miyata T (1995) Molecular clock for dating of divergence between animal phyla. Jpn J Genet 70: 687–692

    Article  PubMed  CAS  Google Scholar 

  • Iwabe N, Kuma K, Miyata T (1996) Evolution of gene families and relationship with organismal evolution: rapid divergence of tissue- specific genes in the early evolution of chordates. Mol Biol Evol 13: 483–493

    PubMed  CAS  Google Scholar 

  • Jukes TH, Cantor CR (1969) Evolution of protein molecules. In: Munro HN (ed) Mammalian protein metabolism III. Academic Press, New York, pp 21–132

    Google Scholar 

  • Kai T, Sugimoto Y, Kusakabe T, Zhang R, Koga K, Hori K (1992) Gene structure and multiple mRNA species of Drosophila melanogaster aldolase generating three isozymes with different enzymatic properties. J Biochem 112: 677–688

    PubMed  CAS  Google Scholar 

  • Kamaishi T, Hashimoto T, Nakamura Y, Nakamura F, Murata S, Okada N, Okamoto K, Shimizu M, Hasegawa M (1996) Protein phylogeny of translation factor EF-1α suggests microsporidians are extremely ancient eukaryotes. J Mol Evol 42: 257–263

    Article  PubMed  CAS  Google Scholar 

  • Kishino H, Miyata T, Hasegawa M (1990) Maximum likelihood inference of protein phylogeny and the origin of chloroplasts. J Mol Evol 30: 151–160

    Article  Google Scholar 

  • Kim J, Yim JJ, Wang S, Dorsett D (1992) Alternate use of divergent forms of an ancient exon in the fructose-1,6- bisphosphate aldolase gene of Drosophila melanogaster. Mol Cell Biol 12: 773–783

    PubMed  CAS  Google Scholar 

  • Kimura M (1983) The neutral theory of molecular evolution. Cambridge University Press, Cambridge

    Google Scholar 

  • Knoll AH (1992) The early evolution of eukaryotes: a geological perspective. Science 256: 622–627

    Article  PubMed  CAS  Google Scholar 

  • Kobayashi M, Takahashi M, Wada H, Satoh N (1993) Molecular phylogeny inferred from sequences of small subunit ribosomal DNA supports the monophyly of the metazoa. Zool Sci 10: 827–833

    PubMed  CAS  Google Scholar 

  • Miyata T, Kuma K, Iwabe N, Nikoh N (1994) A possible link between molecular evolution and tissue evolution demonstrated by tissue specific genes. Jpn J Genet 69: 473–480

    Article  PubMed  CAS  Google Scholar 

  • Needleman Sb, Wunsch CD (1970) A general method applicable to the search for similarities in the amino acid sequence of two proteins. J Mol Biol 48: 443–453

    Article  PubMed  CAS  Google Scholar 

  • Nei M (1987) Molecular evolutionary genetics. Columbia University Press, New York

    Google Scholar 

  • Ono K, Tsutsumi K, Ishikawa K (1990) Structure of chicken aldolase C mRNA and its expression in the liver and brain during development. Biochem Int 20: 921–929

    PubMed  CAS  Google Scholar 

  • Richard OC, Rutter WJ (1961) Preparation and properties of yeast aldolase. J Biol Chem 236: 3177–3184

    Google Scholar 

  • Saitou N, Nei M (1987) The neighbor-joining method: a new method for reconstructing phylogenetic trees. Mol Biol Evol 4: 406–425

    PubMed  CAS  Google Scholar 

  • Sambrook J, Fritsch EF, Maniatis T (1989) Molecular cloning: a laboratory manual. 2nd ed. Cold Spring Harbor Laboratory Press, Cold Spring Harbor, NY

    Google Scholar 

  • Shaw-Lee R, Lissemore JL, Sullivan DT, Tolan DR (1992) Alternative splicing of fructose 1,6-bisphosphate aldolase transcripts in Drosophila melanogaster predicts three isozymes. J Biol Chem 267: 3959–3967

    PubMed  CAS  Google Scholar 

  • Sogin ML, Gunderson JH, Elwood HJ, Alonso RA, Peattie DA (1989) Phylogenetic meaning of the kingdom concept: an unusual ribosomal RNA from Giardia lamblia. Science 243: 75–77

    Article  PubMed  CAS  Google Scholar 

  • Valentine JW (1994) Late Precambrian bilaterians: grades and clades. Proc Natl Acad Sci USA 91: 6751–6757

    Article  PubMed  CAS  Google Scholar 

  • Wada H, Satoh N (1994) Details of the evolutionary history from invertebrates to vertebrates, as deduced from the sequences of 18S rDNA. Proc Natl Acad Sci USA 91: 1801–1804

    Article  PubMed  CAS  Google Scholar 

  • Wainright PO, Hinkle G, Sogin ML, Stickel SK (1993) Monophyletic origins of the metazoa: an evolutionary link with fungi. Science 260: 340–342

    Article  PubMed  CAS  Google Scholar 

  • Willmer PG (1990) Invertebrate relationships. Cambridge University Press, Cambridge

    Google Scholar 

  • Wilson AC, Carlson SS, White TJ (1977) Biochemical evolution. Annu Rev Biochem 46: 573–639

    Article  PubMed  CAS  Google Scholar 

  • Wray GA, Levinton JS, Shapiro LH (1996) Molecular evidence for deep precambrian divergences among metazoan phyla. Science 274: 568–573

    Article  CAS  Google Scholar 

  • Zhang R, Yatsuki H, Kusakabe T, Iwabe N, Mlyata T, Imai T, Yoshida M, Hori K (1995) Structures of cDNA encoding the muscle-type and non muscle-type isozymes of lamprey fructose bisphosphate aldolase and the evolution of aldolase genes. J Biochem 117: 545–553

    PubMed  CAS  Google Scholar 

  • Zuckerkandl E, Pauling L (1965) Evolutionary divergence and convergence in proteins. In: Bryson V, Vogel HJ (eds) Evolving genes and proteins. Academic Press,New York, pp 97–166

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

The nucleotide sequences reported here have been submitted to the DDBJ/EMBL/GenBank DNA databases with the accession numbers AB000890, AB000891, and AB000892

Rights and permissions

Reprints and permissions

About this article

Cite this article

Nikoh, N., Iwabe, N., Kuma, Ki. et al. An Estimate of Divergence Time of Parazoa and Eumetazoa and That of Cephalochordata and Vertebrata by Aldolase and Triose Phosphate Isomerase Clocks. J Mol Evol 45, 97–106 (1997). https://doi.org/10.1007/PL00006208

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/PL00006208

Key words

Navigation