Skip to main content
Log in

Effective action for higher spin fields on (A)dS backgrounds

  • Published:
Journal of High Energy Physics Aims and scope Submit manuscript

Abstract

We study the one loop effective action for a class of higher spin fields by using a first-quantized description. The latter is obtained by considering spinning particles, characterized by an extended local supersymmetry on the worldline, that can propagate consistently on conformally flat spaces. The gauge fixing procedure for calculating the worldline path integral on a loop is delicate, as the gauge algebra contains nontrivial structure functions. Restricting the analysis on (A)dS backgrounds simplifies the gauge fixing procedure, and allows us to produce a useful representation of the one loop effective action. In particular, we extract the first few heat kernel coefficients for arbitrary even spacetime dimension D and for spin S identified by a curvature tensor with the symmetries of a rectangular Young tableau of D/2 rows and [S] columns.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. F. Bastianelli, O. Corradini and E. Latini, Higher spin fields from a worldline perspective, JHEP 02 (2007) 072 [hep-th/0701055] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  2. C. Schubert, Perturbative quantum field theory in the string inspired formalism, Phys. Rept. 355 (2001) 73 [hep-th/0101036] [INSPIRE].

    Article  MathSciNet  ADS  MATH  Google Scholar 

  3. M. Vasiliev, Higher spin gauge theories in various dimensions, Fortsch. Phys. 52 (2004) 702 [hep-th/0401177] [INSPIRE].

    Article  MathSciNet  ADS  MATH  Google Scholar 

  4. D. Sorokin, Introduction to the classical theory of higher spins, AIP Conf. Proc. 767 (2005) 172 [hep-th/0405069] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  5. N. Bouatta, G. Compere and A. Sagnotti, An Introduction to free higher-spin fields, hep-th/0409068 [INSPIRE].

  6. X. Bekaert, S. Cnockaert, C. Iazeolla and M. Vasiliev, Nonlinear higher spin theories in various dimensions, hep-th/0503128 [INSPIRE].

  7. A. Fotopoulos and M. Tsulaia, Gauge Invariant Lagrangians for Free and Interacting Higher Spin Fields. A Review of the BRST formulation, Int. J. Mod. Phys. A 24 (2009) 1 [arXiv:0805.1346] [INSPIRE].

    MathSciNet  ADS  Google Scholar 

  8. A. Sagnotti, Notes on Strings and Higher Spins, arXiv:1112.4285 [INSPIRE].

  9. F. Bastianelli and A. Zirotti, Worldline formalism in a gravitational background, Nucl. Phys. B 642 (2002) 372 [hep-th/0205182] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  10. F. Bastianelli, O. Corradini and A. Zirotti, Dimensional regularization for N = 1 supersymmetric σ-models and the worldline formalism, Phys. Rev. D 67 (2003) 104009 [hep-th/0211134] [INSPIRE].

    ADS  Google Scholar 

  11. F. Bastianelli, O. Corradini and A. Zirotti, BRST treatment of zero modes for the worldline formalism in curved space, JHEP 01 (2004) 023 [hep-th/0312064] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  12. F. Bastianelli, P. Benincasa and S. Giombi, Worldline approach to vector and antisymmetric tensor fields, JHEP 04 (2005) 010 [hep-th/0503155] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  13. F. Bastianelli, P. Benincasa and S. Giombi, Worldline approach to vector and antisymmetric tensor fields. II., JHEP 10 (2005) 114 [hep-th/0510010] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  14. F. Bastianelli and C. Schubert, One loop photon-graviton mixing in an electromagnetic field: Part 1, JHEP 02 (2005) 069 [gr-qc/0412095] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  15. F. Berezin and M. Mariñov, Particle Spin Dynamics as the Grassmann Variant of Classical Mechanics, Annals Phys. 104 (1977) 336 [INSPIRE].

    Article  ADS  MATH  Google Scholar 

  16. V.D. Gershun and V.I. Tkach, Classical and quantum dynamics of particles with arbitrary spin (in Russian), Pisma Zh. Eksp. Teor. Fiz. 29 (1979) 320 [Sov. Phys. JETP 29 (1979) 288].

  17. P.S. Howe, S. Penati, M. Pernici and P.K. Townsend, Wave equations for arbitrary spin from quantization of the extended supersymmetric spinning particle, Phys. Lett. B 215 (1988) 555 [INSPIRE].

    MathSciNet  ADS  Google Scholar 

  18. P.S. Howe, S. Penati, M. Pernici and P.K. Townsend, A particle mechanics description of antisymmetric tensor fields, Class. Quant. Grav. 6 (1989) 1125 [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  19. W. Siegel, Conformal invariance of extended spinning particle mechanics, Int. J. Mod. Phys. A 3(1988)2713 [INSPIRE].

    ADS  Google Scholar 

  20. W. Siegel, All free conformal representations in all dimensions, Int. J. Mod. Phys. A 4 (1989)2015 [INSPIRE].

    ADS  Google Scholar 

  21. R. Metsaev, All conformal invariant representations of d-dimensional anti-de Sitter group, Mod. Phys. Lett. A 10 (1995) 1719 [INSPIRE].

    MathSciNet  ADS  Google Scholar 

  22. F. Bastianelli, O. Corradini and E. Latini, Spinning particles and higher spin fields on (A)dS backgrounds, JHEP 11 (2008) 054 [arXiv:0810.0188] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  23. S. Kuzenko and Z. Yarevskaya, Conformal invariance, N extended supersymmetry and massless spinning particles in anti-de Sitter space, Mod. Phys. Lett. A 11 (1996) 1653 [hep-th/9512115] [INSPIRE].

    MathSciNet  ADS  Google Scholar 

  24. O. Corradini, Half-integer Higher Spin Fields in (A)dS from Spinning Particle Models, JHEP 09 (2010) 113 [arXiv:1006.4452] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  25. F. Bastianelli, O. Corradini and A. Waldron, Detours and Paths: BRST Complexes and Worldline Formalism, JHEP 05 (2009) 017 [arXiv:0902.0530] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  26. D. Cherney, E. Latini and A. Waldron, BRST Detour Quantization, J. Math. Phys. 51 (2010) 062302 [arXiv:0906.4814] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  27. D. Cherney, E. Latini and A. Waldron, Generalized Einstein Operator Generating Functions, Phys. Lett. B 682 (2010) 472 [arXiv:0909.4578] [INSPIRE].

    MathSciNet  ADS  Google Scholar 

  28. C. Fronsdal, Massless Fields with Integer Spin, Phys. Rev. D 18 (1978) 3624 [INSPIRE].

    ADS  Google Scholar 

  29. J. Fang and C. Fronsdal, Massless Fields with Half Integral Spin, Phys. Rev. D 18 (1978) 3630 [INSPIRE].

    ADS  Google Scholar 

  30. C. Fronsdal, Singletons and Massless, Integral Spin Fields on de Sitter Space (Elementary Particles in a Curved Space. 7., Phys. Rev. D 20 (1979) 848 [INSPIRE].

    MathSciNet  ADS  Google Scholar 

  31. I. Buchbinder, A. Pashnev and M. Tsulaia, Lagrangian formulation of the massless higher integer spin fields in the AdS background, Phys. Lett. B 523 (2001) 338 [hep-th/0109067] [INSPIRE].

    MathSciNet  ADS  Google Scholar 

  32. D. Francia and A. Sagnotti, Minimal local Lagrangians for higher-spin geometry, Phys. Lett. B 624 (2005) 93 [hep-th/0507144] [INSPIRE].

    MathSciNet  ADS  Google Scholar 

  33. I. Buchbinder, V. Krykhtin and A. Reshetnyak, BRST approach to Lagrangian construction for fermionic higher spin fields in (A)dS space, Nucl. Phys. B 787 (2007) 211 [hep-th/0703049] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  34. A. Campoleoni, D. Francia, J. Mourad and A. Sagnotti, Unconstrained Higher Spins of Mixed Symmetry. I. Bose Fields, Nucl. Phys. B 815 (2009) 289 [arXiv:0810.4350] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  35. A. Campoleoni, D. Francia, J. Mourad and A. Sagnotti, Unconstrained Higher Spins of Mixed Symmetry. II. Fermi Fields, Nucl. Phys. B 828 (2010) 405 [arXiv:0904.4447] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  36. A. Campoleoni and D. Francia, Maxwell-like Lagrangians for higher spins, arXiv:1206.5877 [INSPIRE].

  37. S. Deser and A. Waldron, Gauge invariances and phases of massive higher spins in (A)dS, Phys. Rev. Lett. 87 (2001) 031601 [hep-th/0102166] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  38. S. Deser and A. Waldron, Partial masslessness of higher spins in (A)dS, Nucl. Phys. B 607 (2001)577 [hep-th/0103198] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  39. Y. Zinoviev, On massive high spin particles in AdS, hep-th/0108192 [INSPIRE].

  40. P. de Medeiros, Massive gauge invariant field theories on spaces of constant curvature, Class. Quant. Grav. 21 (2004) 2571 [hep-th/0311254] [INSPIRE].

    Article  ADS  MATH  Google Scholar 

  41. R. Metsaev, Massive totally symmetric fields in AdS(d), Phys. Lett. B 590 (2004) 95 [hep-th/0312297] [INSPIRE].

    MathSciNet  ADS  Google Scholar 

  42. J.R. David, M.R. Gaberdiel and R. Gopakumar, The Heat Kernel on AdS 3 and its Applications, JHEP 04 (2010) 125 [arXiv:0911.5085] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  43. R. Gopakumar, R.K. Gupta and S. Lal, The Heat Kernel on AdS, JHEP 11 (2011) 010 [arXiv:1103.3627] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  44. R.K. Gupta and S. Lal, Partition Functions for Higher-Spin theories in AdS, JHEP 07 (2012)071 [arXiv:1205.1130] [INSPIRE].

    Article  ADS  Google Scholar 

  45. X. Bekaert, E. Joung and J. Mourad, Effective action in a higher-spin background, JHEP 02 (2011) 048 [arXiv:1012.2103] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  46. N. Marcus, Kähler spinning particles, Nucl. Phys. B 439 (1995) 583 [hep-th/9409175] [INSPIRE].

    Article  ADS  Google Scholar 

  47. F. Bastianelli and R. Bonezzi, U(N) spinning particles and higher spin equations on complex manifolds, JHEP 03 (2009) 063 [arXiv:0901.2311] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  48. F. Bastianelli and R. Bonezzi, Quantum theory of massless (p,0)-forms, JHEP 09 (2011) 018 [arXiv:1107.3661] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  49. F. Bastianelli, R. Bonezzi and C. Iazeolla, Quantum theories of (p,q)-forms, JHEP 08 (2012) 045 [arXiv:1204.5954] [INSPIRE].

    Article  ADS  Google Scholar 

  50. J. De Boer, B. Peeters, K. Skenderis and P. Van Nieuwenhuizen, Loop calculations in quantum mechanical nonlinear σ-models, Nucl. Phys. B 446 (1995) 211 [hep-th/9504097] [INSPIRE].

    Article  ADS  Google Scholar 

  51. J. de Boer, B. Peeters, K. Skenderis and P. van Nieuwenhuizen, Loop calculations in quantum mechanical nonlinear σ-models σ-models with fermions and applications to anomalies, Nucl. Phys. B 459 (1996) 631 [hep-th/9509158] [INSPIRE].

    Article  ADS  Google Scholar 

  52. F. Bastianelli, The Path integral for a particle in curved spaces and Weyl anomalies, Nucl. Phys. B 376 (1992) 113 [hep-th/9112035] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  53. F. Bastianelli and P. van Nieuwenhuizen, Trace anomalies from quantum mechanics, Nucl. Phys. B 389 (1993) 53 [hep-th/9208059] [INSPIRE].

    Article  ADS  Google Scholar 

  54. F. Bastianelli, K. Schalm and P. van Nieuwenhuizen, Mode regularization, time slicing, Weyl ordering and phase space path integrals for quantum mechanical nonlinear σ-models, Phys. Rev. D 58 (1998) 044002 [hep-th/9801105] [INSPIRE].

    ADS  Google Scholar 

  55. F. Bastianelli and O. Corradini, On mode regularization of the configuration space path integral in curved space, Phys. Rev. D 60 (1999) 044014 [hep-th/9810119] [INSPIRE].

    MathSciNet  ADS  Google Scholar 

  56. R. Bonezzi and M. Falconi, Mode Regularization for N = 1,2 SUSY σ-model, JHEP 10 (2008) 019 [arXiv:0807.2276] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  57. H. Kleinert and A. Chervyakov, Reparametrization invariance of path integrals, Phys. Lett. B 464 (1999) 257 [hep-th/9906156] [INSPIRE].

    MathSciNet  ADS  Google Scholar 

  58. F. Bastianelli, O. Corradini and P. van Nieuwenhuizen, Dimensional regularization of nonlinear σ-models on a finite time interval, Phys. Lett. B 494 (2000) 161 [hep-th/0008045] [INSPIRE].

    ADS  Google Scholar 

  59. F. Bastianelli, O. Corradini and P. van Nieuwenhuizen, Dimensional regularization of the path integral in curved space on an infinite time interval, Phys. Lett. B 490 (2000) 154 [hep-th/0007105] [INSPIRE].

    ADS  Google Scholar 

  60. F. Bastianelli and P. van Nieuwenhuizen, Path integrals and anomalies in curved space, Cambridge University Press, Cambridge, U.K. (2006).

    Book  MATH  Google Scholar 

  61. F. Bastianelli, R. Bonezzi, O. Corradini and E. Latini, Extended SUSY quantum mechanics: transition amplitudes and path integrals, JHEP 06 (2011) 023 [arXiv:1103.3993] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  62. M. Henneaux and C. Teitelboim, Quantization of gauge systems, Princeton University Press, Princeton, U.S.A. (1992).

    MATH  Google Scholar 

  63. J. Kaneko, Selberg integrals and hypergeometric functions associated with Jack polynomials, SIAM J. Math. Anal. 24 (1993) 1086.

    Article  MathSciNet  MATH  Google Scholar 

  64. M.L. Mehta, Random Matrices, 3rd ed., Elsevier Academic Press, Amsterdam (2004).

    MATH  Google Scholar 

  65. K. Aomoto, Jacobi polynomials associated with Selberg integrals, SIAM J. Math. Anal. 18 (1987)545.

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Olindo Corradini.

Additional information

ArXiv ePrint: 1210.4649

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bastianelli, F., Bonezzi, R., Corradini, O. et al. Effective action for higher spin fields on (A)dS backgrounds. J. High Energ. Phys. 2012, 113 (2012). https://doi.org/10.1007/JHEP12(2012)113

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/JHEP12(2012)113

Keywords

Navigation