Skip to main content
Log in

Potential theory, path integrals and the Laplacian of the indicator

  • Published:
Journal of High Energy Physics Aims and scope Submit manuscript

Abstract

This paper links the field of potential theory — i.e. the Dirichlet and Neumann problems for the heat and Laplace equation — to that of the Feynman path integral, by postulating the following seemingly ill-defined potential:

$ V(x):=\mp \frac{{{\sigma^2}}}{2}\nabla_x^2{1_{{x\in D}}} $

where the volatility is the reciprocal of the mass (i.e. m = 1/σ 2) and ħ = 1. The Laplacian of the indicator can be interpreted using the theory of distributions: it is the d-dimensional analogue of the Dirac δ′-function, which can formally be defined as \( \partial_x^2{1_{x>0 }} \).

We show, first, that the path integral's perturbation series (or Born series) matches the classical single and double boundary layer series of potential theory, thereby connecting two hitherto unrelated fields. Second, we show that the perturbation series is valid for all domains D that allow Green's theorem (i.e. with a finite number of corners, edges and cusps), thereby expanding the classical applicability of boundary layers. Third, we show that the minus (plus) in the potential holds for the Dirichlet (Neumann) boundary condition; showing for the first time a particularly close connection between these two classical problems. Fourth, we demonstrate that the perturbation series of the path integral converges as follows:

mode of convergence

absorbed propagator

reflected propagator

convex domain

alternating

monotone

concave domain

monotone

alternating

We also discuss the third boundary problem (which poses Robin boundary conditions) and discuss an extension to moving domains.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. G. Green, An Essay on the Application of mathematical Analysis to the theories of Electricity and Magnetism, printed for the author by T. Wheelhouse (1828) arXiv:0807.0088.

  2. R. Feynman, Space-time approach to nonrelativistic quantum mechanics, Rev. Mod. Phys. 20 (1948) 367 [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  3. P. Dirac, The principles of quantum mechanics, Oxford University Press, Oxford, U.K. (1930).

    MATH  Google Scholar 

  4. S. Zaremba, Sur le principe de dirichlet, Acta Mathematica 34 (1911) 293 [http://www.springerlink.com/index/P672848654673112.pdf].

    Google Scholar 

  5. H. Lebesgue, Sur des cas dimpossibilité du probleme de dirichlet, Comptes Rendus de la Société Mathématique de France 41 (1913) 17.

    Google Scholar 

  6. S. Port and C. Stone, Brownian Motion and Classical Potential Theory, Academic Press, New York, U.S.A. (1978).

    MATH  Google Scholar 

  7. S. Kakutani, Two-dimensional brownian motion and harmonic functions, P. Jpn. Acad. A 20 (1944)706.

    Article  MathSciNet  Google Scholar 

  8. K. Chung, Green, Brown, and probability, World Scientific Publishing Company (1995).

  9. G. Brosamler, A probabilistic solution of the neumann problem, Math. Scand. 38 (1976) 137.

    MathSciNet  MATH  Google Scholar 

  10. R. Balian and C. Bloch, Solution of the Schrödinger Equation in Terms of Classical Paths, Annals Phys. 85 (1974) 514 [INSPIRE].

    Article  MathSciNet  ADS  MATH  Google Scholar 

  11. R. Balian and B. Duplantier, Electromagnetic Waves Near Perfect Conductors. 1. Multiple Scattering Expansions. Distribution of Modes, Annals Phys. 104 (1977) 300 [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  12. R. Balian and B. Duplantier, Electromagnetic Waves Near Perfect Conductors. 2. Casimir Effect, Annals Phys. 112 (1978) 165 [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  13. T. Hansson and R. Jaffe, Cavity quantum chromodynamics, Phys. Rev. D 28 (1983) 882 [INSPIRE].

    ADS  Google Scholar 

  14. T. Hansson and R. Jaffe, The multiple reflection expansion for confined scalar, Dirac and gauge fields, Annals Phys. 151 (1983) 204 [INSPIRE].

    Article  ADS  Google Scholar 

  15. M. Bordag and D. Vassilevich, Heat kernel expansion for semitransparent boundaries, J. Phys. A 32 (1999) 8247 [hep-th/9907076] [INSPIRE].

    MathSciNet  ADS  Google Scholar 

  16. M. Bordag, D. Vassilevich, H. Falomir and E. Santangelo, Multiple reflection expansion and heat kernel coefficients, Phys. Rev. D 64 (2001) 045017 [hep-th/0103037] [INSPIRE].

    MathSciNet  ADS  Google Scholar 

  17. M. Bordag, H. Falomir, E. Santangelo and D. Vassilevich, Boundary dynamics and multiple reflection expansion for Robin boundary conditions, Phys. Rev. D 65 (2002) 064032 [hep-th/0111073] [INSPIRE].

    MathSciNet  ADS  Google Scholar 

  18. I. Pirozhenko, V. Nesterenko and M. Bordag, Integral equations for heat kernel in compound media, J. Math. Phys. 46 (2005) 042305.

    Article  MathSciNet  ADS  Google Scholar 

  19. M.F. Maghrebi, A diagrammatic expansion of the Casimir energy in multiple reflections: theory and applications, Phys. Rev. D 83 (2011) 045004 [arXiv:1012.1060] [INSPIRE].

    ADS  Google Scholar 

  20. R. Balian and C. Bloch, Distribution of eigenfrequencies for the wave equation in a finite domain. 1. Three-dimensional problem with smooth boundary surface, Annals Phys. 60 (1970) 401 [INSPIRE].

    Article  MathSciNet  ADS  MATH  Google Scholar 

  21. M. Kac, Can One Hear the Shape of a Drum?, The American Mathematical Monthly 73 (1966) 1 [http://dx.doi.org/10.2307/2313748].

  22. K. Stewartson and R. Waechter, On hearing the shape of a drum: further results, Math. Proc. Cambridge 69 (1971) 353.

    Article  ADS  MATH  Google Scholar 

  23. M. Protter, Can one hear the shape of a drum? revisted, Siam Review 29 (1987) 185 [http://www.jstor.org/stable/10.2307/2031658].

    Google Scholar 

  24. O. Giraud and K. Thas, Hearing shapes of drums: Mathematical and physical aspects of isospectrality, Rev. Mod. Phys. 82 (2010) 2213 [arXiv:1101.1239].

    Article  ADS  Google Scholar 

  25. M. Kac, On distributions of certain wiener functionals, Trans. Amer. Math. Soc 65 (1949) 1 [http://www.ams.org/journals/tran/1949-065-01/S0002-9947-1949-0027960-X/S0002-9947-1949-0027960-X.pdf].

  26. M. Kac, On some connections between probability theory and differential and integral equations, in proceedings of Second Berkeley Symposium on Mathematical Statistics and Probability, Statistical Laboratory of the University of California, Berkeley, California, U.S.A., 31 July-12 August 1950, Proceedings of the Second Berkeley Symposium on Mathematical Statistics and Probability 1 (1951) 189, J. Neyman ed., University of California Press, Berkeley, California, U.S.A. [http://projecteuclid.org/euclid.bsmsp/1200500229].

  27. R. Feynman and A. Hibbs, Quantum Mechanics and Path Integrals, McGraw-Hill Companies (June 1965).

  28. L. Ryder, Quantum Field Theory, 2 ed., Cambridge University Press, Cambridge, U.K. (June 1996).

    MATH  Google Scholar 

  29. W. Janke and H. Kleinert, Summing paths for a particle in a box, Lettere Al Nuovo Cimento 25 (1979) 297.

    Article  Google Scholar 

  30. T. Clark, R. Menikoff and D. Sharp, Quantum mechanics on the half-line using path integrals, Phys. Rev. D 22 (1980) 3012 [INSPIRE].

    MathSciNet  ADS  Google Scholar 

  31. S. Albeverio, F. Gesztesy, R. Høegh-Krohn and W. Kirsch, On point interactions in one dimension, J. Operat. Theor. 12 (1984) 101 [http://www.theta.ro/jot/archive/1984-012-001/1984-012-001-006.pdf].

    Google Scholar 

  32. S. Lawande and K. Bhagwat, Feynman propagator for the [delta]-function potential, Phys. Lett. A 131 (1988) 8.

    MathSciNet  ADS  Google Scholar 

  33. S. Albeverio, Z. Brzezniak and L. Dabrowski, Time-dependent propagator with point interaction, J. Phys. A 27 (1994) 4933.

    MathSciNet  ADS  Google Scholar 

  34. C. Grosche, Path integrals for potential problems with δ-function perturbation, J. Phys. A 23 (1990) 5205.

    MathSciNet  ADS  Google Scholar 

  35. I. Karatzas and S. Shreve, Brownian Motion and Stochastic Calculus, Graduate Texts in Mathematics, 2nd ed., Springer (Aug. 1991).

  36. S. Albeverio, F. Gesztesy, R. Hoegh-Krohn and H. Holden, Solvable models in quantum mechanics, Springer (1988), 2nd ed., American Mathematical Society Chelsea Publishing (2005).

  37. B. Zhao, Comments on the schrödinger equation with delta-interaction in one dimension, J. Phys. A 25 (1992) L617.

    ADS  Google Scholar 

  38. S. Albeverio, F. Gesztesy and H. Holden, Comments on a recent note on the schrodinger equation with a delta-interaction, J. Phys. A 26 (1993) 3903.

    MathSciNet  ADS  Google Scholar 

  39. D. Griffiths, Boundary conditions at the derivative of a delta function, J. Phys. A 26 (1993) 2265.

    ADS  Google Scholar 

  40. F. Coutinho, Y. Nogami, and J. Perez, Generalized point interactions in one-dimensional quantum mechanics, J. Phys. A 30 (1997) 3937.

    MathSciNet  ADS  Google Scholar 

  41. M. Rajabpour, Area distribution of an elastic brownian motion, J. Phys. 42 (2009) 485205.

    MathSciNet  Google Scholar 

  42. A. Auerbach, S. Kivelson and D. Nicole, Path Decomposition for Multidimensional Tunneling, Phys. Rev. Lett. 53 (1984) 411 [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  43. A. Auerbach and S. Kivelson, The path decomposition expansion and multidimensional tunneling, Nucl. Phys. B 257 (1985) 799 [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  44. M. Goodman, Path integral solution to the infinite square well, Am. J. Phys. 49 (1981) 843 [http://link.aip.org/link/?AJPIAS/49/843/1].

  45. J. Halliwell, An operator derivation of the path decomposition expansion, Phys. Lett. A 207 (1995) 237.

    MathSciNet  ADS  Google Scholar 

  46. K. Chung, Probabilistic approach in potential theory to the equilibrium problem, Ann. Inst. Fourier 23 (1973) 313.

    Article  MATH  Google Scholar 

  47. P. Hsu, On excursions of reflecting brownian motion, Trans. Amer. Math. Soc. 296 (1986) 239.

    Article  MathSciNet  MATH  Google Scholar 

  48. A. Polyanin, A. Manzhirov and A. Polianin, Handbook of integral equations, CRC press (1998).

  49. D. Porter and D. Stirling, Integral equations: a practical treatment, from spectral theory to applications, Cambridge University Press, Cambridge, U.K. (1990).

    Book  MATH  Google Scholar 

  50. P. Hsu, Probabilistic approach to the neumann problem, Commun. Pur. Appl. Math. 38 (1985) 445.

    Article  MATH  Google Scholar 

  51. P. Hsu, On the θ-function of a riemannian manifold with boundary, Transactions of the American Mathematical Society (1992) 643 [http://www.jstor.org/stable/10.2307/2154052].

  52. M. Berry and M. Dennis, Boundary-condition-varying circle billiards and gratings: the dirichlet singularity, J. Phys. A 41 (2008) 135203.

    MathSciNet  ADS  Google Scholar 

  53. M. Marletta and G. Rozenblum, A laplace operator with boundary conditions singular at one point, J. Phys. A 42 (2009) 125204.

    MathSciNet  ADS  Google Scholar 

  54. L. Schulman, Techniques and applications of path integration. John Wiley & Sons Inc. (1981), reprinted by Dover (2005).

  55. P. Mörters and Y. Peres, Brownian Motion, 1 ed., Cambridge University Press, Cambridge, U.K. (2010).

    MATH  Google Scholar 

  56. K. Burdzy, Z. Chen and J. Sylvester, The heat equation and reflected brownian motion in time-dependent domains, Annals of probability 32 (2004) 775.

    Article  MathSciNet  MATH  Google Scholar 

  57. T. Lorenz, Reynolds transport theorem for differential inclusions, Set-Valued Analysis 14 (2006) 209.

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rutger-Jan Lange.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lange, RJ. Potential theory, path integrals and the Laplacian of the indicator. J. High Energ. Phys. 2012, 32 (2012). https://doi.org/10.1007/JHEP11(2012)032

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/JHEP11(2012)032

Keywords

Navigation