Skip to main content
Log in

Timelike U-dualities in generalised geometry

  • Published:
Journal of High Energy Physics Aims and scope Submit manuscript

Abstract

We study timelike U-dualities acting in three and four directions of 11-dimensional supergravity, which form the groups SL(2) × SL(3) and SL(5). Using generalised geometry, we find that timelike U-dualities, despite previous conjectures, do not change the signature of the spacetime. Furthermore, we prove that the spacetime signature must be (−, +, . . . , +) when the U-duality modular group is either \( \frac{{\mathrm{SL}(2)\times \mathrm{SL}(3)}}{{\mathrm{SO}\left( {1,1} \right)\times \mathrm{SO}\left( {2,1} \right)}} \) or \( \frac{{\mathrm{SL}(5)}}{{\mathrm{SO}\left( {3,2} \right)}} \). We find that for some dual solutions it is necessary to include a trivector field which is related to the existence of non-geometric fluxes in lower dimensions. In the second part of the paper, we explicitly study the action of the dualities on supergravity solutions corresponding to M2-branes. For a finite range of the transformation, the action of SL(2) × SL(3) on the worldvolume of uncharged M2-branes charges them while it changes the charge of extreme M2-branes. It thus acts as a Harrison transformation. At the limits of the range, we obtain the “subtracted geometries” which correspond to an infinite Harrison boost. Outside this range the trivector field becomes non-zero and we obtain a dual solution that cannot be uniquely written in terms of a metric, 3-form and trivector. Instead it corresponds to a family of solutions linked by a local SO(1, 1) rotation. The SL(5) duality is used to act on a smeared extreme M2-brane giving a brane-like solution carrying momentum in the transverse direction that the brane was delocalised along.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. E. Cremmer, J. Scherk and S. Ferrara, SU(4) invariant supergravity theory, Phys. Lett. B 74 (1978) 61 [INSPIRE].

    Article  ADS  Google Scholar 

  2. E. Cremmer and B. Julia, The N = 8 supergravity theory. 1. The Lagrangian, Phys. Lett. B 80 (1978) 48 [INSPIRE].

    Article  ADS  Google Scholar 

  3. E. Cremmer and B. Julia, The SO(8) supergravity, Nucl. Phys. B 159 (1979) 141 [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  4. M. Gualtieri, Generalized complex geometry, math/0401221 [INSPIRE].

  5. N. Hitchin, Generalized Calabi-Yau manifolds, Quart. J. Math. Oxford Ser. 54 (2003) 281 [math/0209099] [INSPIRE].

    Article  MathSciNet  MATH  Google Scholar 

  6. N. Hitchin, Brackets, forms and invariant functionals, math/0508618 [INSPIRE].

  7. N. Hitchin, Instantons, Poisson structures and generalized Kähler geometry, Commun. Math. Phys. 265 (2006) 131 [math/0503432] [INSPIRE].

    Article  MathSciNet  ADS  MATH  Google Scholar 

  8. C. Hull, Generalised geometry for M-theory, JHEP 07 (2007) 079 [hep-th/0701203] [INSPIRE].

    Article  ADS  Google Scholar 

  9. D.S. Berman and M.J. Perry, Generalized geometry and M-theory, JHEP 06 (2011) 074 [arXiv:1008.1763] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  10. D.S. Berman, H. Godazgar and M.J. Perry, SO(5, 5) duality in M-theory and generalized geometry, Phys. Lett. B 700 (2011) 65 [arXiv:1103.5733] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  11. D.S. Berman, H. Godazgar, M.J. Perry and P. West, Duality invariant actions and generalised geometry, JHEP 02 (2012) 108 [arXiv:1111.0459] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  12. D.S. Berman, H. Godazgar, M. Godazgar and M.J. Perry, The local symmetries of M-theory and their formulation in generalised geometry, JHEP 01 (2012) 012 [arXiv:1110.3930] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  13. D.S. Berman, M. Cederwall, A. Kleinschmidt and D.C. Thompson, The gauge structure of generalised diffeomorphisms, JHEP 01 (2013) 064 [arXiv:1208.5884] [INSPIRE].

    Article  ADS  Google Scholar 

  14. D.S. Berman, E.T. Musaev, D.C. Thompson and D.C. Thompson, Duality invariant M-theory: gauged supergravities and Scherk-Schwarz reductions, JHEP 10 (2012) 174 [arXiv:1208.0020] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  15. G. Aldazabal, E. Andres, P.G. Camara and M. Graña, U-dual fluxes and generalized geometry, JHEP 11 (2010) 083 [arXiv:1007.5509] [INSPIRE].

    Article  ADS  Google Scholar 

  16. P.P. Pacheco and D. Waldram, M-theory, exceptional generalised geometry and superpotentials, JHEP 09 (2008) 123 [arXiv:0804.1362] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  17. A. Coimbra, C. Strickland-Constable and D. Waldram, E d(d) × ℝ+ generalised geometry, connections and M-theory, arXiv:1112.3989 [INSPIRE].

  18. C. Hull and R. Reid-Edwards, Flux compactifications of M-theory on twisted tori, JHEP 10 (2006) 086 [hep-th/0603094] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  19. C. Hull and B. Zwiebach, Double field theory, JHEP 09 (2009) 099 [arXiv:0904.4664] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  20. C. Hull and B. Zwiebach, The gauge algebra of double field theory and Courant brackets, JHEP 09 (2009) 090 [arXiv:0908.1792] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  21. O. Hohm, C. Hull and B. Zwiebach, Generalized metric formulation of double field theory, JHEP 08 (2010) 008 [arXiv:1006.4823] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  22. O. Hohm, C. Hull and B. Zwiebach, Background independent action for double field theory, JHEP 07 (2010) 016 [arXiv:1003.5027] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  23. O. Hohm and B. Zwiebach, Large gauge transformations in double field theory, JHEP 02 (2013) 075 [arXiv:1207.4198] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  24. B. de Wit and H. Nicolai, d = 11 supergravity with local SU(8) invariance, Nucl. Phys. B 274 (1986) 363 [INSPIRE].

    Article  ADS  Google Scholar 

  25. P.C. West, E 11 and M-theory, Class. Quant. Grav. 18 (2001) 4443 [hep-th/0104081] [INSPIRE].

    Article  ADS  MATH  Google Scholar 

  26. F. Riccioni and P.C. West, E 11 -extended spacetime and gauged supergravities, JHEP 02 (2008) 039 [arXiv:0712.1795] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  27. A. Kleinschmidt and P.C. West, Representations of G +++ and the role of space-time, JHEP 02 (2004) 033 [hep-th/0312247] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  28. P.C. West, E 11 , SL(32) and central charges, Phys. Lett. B 575 (2003) 333 [hep-th/0307098] [INSPIRE].

    Article  ADS  Google Scholar 

  29. P.C. West, E 11 origin of brane charges and U-duality multiplets, JHEP 08 (2004) 052 [hep-th/0406150] [INSPIRE].

    Article  ADS  Google Scholar 

  30. P.C. West, Brane dynamics, central charges and E 11, JHEP 03 (2005) 077 [hep-th/0412336] [INSPIRE].

    Article  ADS  Google Scholar 

  31. F. Riccioni and P.C. West, Dual fields and E 11, Phys. Lett. B 645 (2007) 286 [hep-th/0612001] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  32. P.P. Cook and P.C. West, Charge multiplets and masses for E 11, JHEP 11 (2008) 091 [arXiv:0805.4451] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  33. P. West, E11 , generalised space-time and IIA string theory, Phys. Lett. B 696 (2011) 403 [arXiv:1009.2624] [INSPIRE].

    Article  ADS  Google Scholar 

  34. P. West, Generalised space-time and duality, Phys. Lett. B 693 (2010) 373 [arXiv:1006.0893] [INSPIRE].

    Article  ADS  Google Scholar 

  35. P. West, Generalised geometry, eleven dimensions and E 11, JHEP 02 (2012) 018 [arXiv:1111.1642] [INSPIRE].

    Article  ADS  Google Scholar 

  36. P. West, E 11 , generalised space-time and equations of motion in four dimensions, JHEP 12 (2012) 068 [arXiv:1206.7045] [INSPIRE].

    Article  ADS  Google Scholar 

  37. E. Malek, U-duality in three and four dimensions, arXiv:1205.6403 [INSPIRE].

  38. C. Hull, Timelike T duality, de Sitter space, large-N gauge theories and topological field theory, JHEP 07 (1998) 021 [hep-th/9806146] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  39. C. Hull, Duality and the signature of space-time, JHEP 11 (1998) 017 [hep-th/9807127] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  40. C. Hull and B. Julia, Duality and moduli spaces for timelike reductions, Nucl. Phys. B 534 (1998) 250 [hep-th/9803239] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  41. O. Hohm, S.K. Kwak and B. Zwiebach, Unification of type II strings and T-duality, Phys. Rev. Lett. 107 (2011) 171603 [arXiv:1106.5452] [INSPIRE].

    Article  ADS  Google Scholar 

  42. O. Hohm, S.K. Kwak and B. Zwiebach, Double field theory of type II strings, JHEP 09 (2011) 013 [arXiv:1107.0008] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  43. M. Duff and J. Lu, Duality rotations in membrane theory, Nucl. Phys. B 347 (1990) 394 [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  44. D.S. Berman, E.T. Musaev and M.J. Perry, Boundary terms in generalized geometry and doubled field theory, Phys. Lett. B 706 (2011) 228 [arXiv:1110.3097] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  45. D. Andriot, M. Larfors, D. Lüst and P. Patalong, A ten-dimensional action for non-geometric fluxes, JHEP 09 (2011) 134 [arXiv:1106.4015] [INSPIRE].

    Article  ADS  Google Scholar 

  46. T. Buscher, A symmetry of the string background field equations, Phys. Lett. B 194 (1987) 59 [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  47. T. Buscher, Path integral derivation of quantum duality in nonlinear σ-models, Phys. Lett. B 201 (1988) 466 [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  48. M. Graña, R. Minasian, M. Petrini and D. Waldram, T-duality, generalized geometry and non-geometric backgrounds, JHEP 04 (2009) 075 [arXiv:0807.4527] [INSPIRE].

    Article  ADS  Google Scholar 

  49. D. Andriot, O. Hohm, M. Larfors, D. Lüst and P. Patalong, A geometric action for non-geometric fluxes, Phys. Rev. Lett. 108 (2012) 261602 [arXiv:1202.3060] [INSPIRE].

    Article  ADS  Google Scholar 

  50. D. Andriot, O. Hohm, M. Larfors, D. Lüst and P. Patalong, Non-geometric fluxes in supergravity and double field theory, Fortsch. Phys. 60 (2012) 1150 [arXiv:1204.1979] [INSPIRE].

    Article  ADS  MATH  Google Scholar 

  51. G. Aldazabal, W. Baron, D. Marques and C. Núñez, The effective action of double field theory, JHEP 11 (2011) 052 [Erratum ibid. 11 (2011) 109] [arXiv:1109.0290] [INSPIRE].

  52. G. Dibitetto, J. Fernandez-Melgarejo, D. Marques and D. Roest, Duality orbits of non-geometric fluxes, Fortsch. Phys. 60 (2012) 1123 [arXiv:1203.6562] [INSPIRE].

    Article  MathSciNet  ADS  MATH  Google Scholar 

  53. E. Witten, String theory dynamics in various dimensions, Nucl. Phys. B 443 (1995) 85 [hep-th/9503124] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  54. R. Güven, Black p-brane solutions of D = 11 supergravity theory, Phys. Lett. B 276 (1992) 49 [INSPIRE].

    Article  ADS  Google Scholar 

  55. B.K. Harrison, New solutions of the Einstein-Maxwell equations from old, J. Math. Phys. 9 (1968) 1744.

    Article  ADS  MATH  Google Scholar 

  56. P. Breitenlohner, D. Maison and G.W. Gibbons, Four-dimensional black holes from Kaluza-Klein theories, Commun. Math. Phys. 120 (1988) 295 [INSPIRE].

    Article  MathSciNet  ADS  MATH  Google Scholar 

  57. M. Cvetič and G. Gibbons, Conformal symmetry of a black hole as a scaling limit: a black hole in an asymptotically conical box, JHEP 07 (2012) 014 [arXiv:1201.0601] [INSPIRE].

    Article  ADS  Google Scholar 

  58. A. Virmani, Subtracted geometry from Harrison transformations, JHEP 07 (2012) 086 [arXiv:1203.5088] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  59. A. Castro, A. Maloney and A. Strominger, Hidden conformal symmetry of the Kerr black hole, Phys. Rev. D 82 (2010) 024008 [arXiv:1004.0996] [INSPIRE].

    MathSciNet  ADS  Google Scholar 

  60. M. Cvetič and F. Larsen, Conformal symmetry for general black holes, JHEP 02 (2012) 122 [arXiv:1106.3341] [INSPIRE].

    Article  ADS  Google Scholar 

  61. M. Cvetič and F. Larsen, Conformal symmetry for black holes in four dimensions, JHEP 09 (2012) 076 [arXiv:1112.4846] [INSPIRE].

    Article  ADS  Google Scholar 

  62. G. Compere, W. Song and A. Virmani, Microscopics of extremal Kerr from spinning M5 branes, JHEP 10 (2011) 087 [arXiv:1010.0685] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  63. S. Bertini, S.L. Cacciatori and D. Klemm, Conformal structure of the Schwarzschild black hole, Phys. Rev. D 85 (2012) 064018 [arXiv:1106.0999] [INSPIRE].

    ADS  Google Scholar 

  64. G. Compere, The Kerr/CFT correspondence and its extensions: a comprehensive review, Living Rev. Rel. 15 (2012) 11 [arXiv:1203.3561] [INSPIRE].

    Google Scholar 

  65. M. Duff and K. Stelle, Multimembrane solutions of D = 11 supergravity, Phys. Lett. B 253 (1991) 113 [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  66. C. Hull and P. Townsend, Unity of superstring dualities, Nucl. Phys. B 438 (1995) 109 [hep-th/9410167] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Emanuel Malek.

Additional information

ArXiv ePrint: 1301.0543

Rights and permissions

Reprints and permissions

About this article

Cite this article

Malek, E. Timelike U-dualities in generalised geometry. J. High Energ. Phys. 2013, 185 (2013). https://doi.org/10.1007/JHEP11(2013)185

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/JHEP11(2013)185

Keywords

Navigation