Skip to main content
Log in

On the quark-gluon vertex and quark-ghost kernel: combining lattice simulations with Dyson-Schwinger equations

  • Published:
Journal of High Energy Physics Aims and scope Submit manuscript

Abstract

We investigate the dressed quark-gluon vertex combining two established non-perturbative approaches to QCD: the Dyson-Schwinger equation (DSE) for the quark propagator and lattice-regularized simulations for the quark, gluon and ghost propagators. The vertex is modeled using a generalized Ball-Chiu ansatz parameterized by a single form actor \( {{\widetilde{X}}_0} \) which effectively represents the quark-ghost scattering kernel. The solution space of the DSE inversion for \( {{\widetilde{X}}_0} \) is highly degenerate, which can be dealt with by a numerical regularization scheme. We consider two possibilities: (i) linear regularization and (ii) the Maximum Entropy Method. These two numerical approaches yield compatible \( {{\widetilde{X}}_0} \) functions for the range of momenta where lattice data is available and feature a strong enhancement of the generalized Ball-Chiu vertex for momenta below 1 GeV. Our ansatz for the quark-gluon vertex is then used to solve the quark Dyson-Schwinger equation which yields a mass function in good agreement with lattice simulations and thus provides adequate dynamical chiral symmetry breaking.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. P.O. Bowman, U.M. Heller, D.B. Leinweber, M.B. Parappilly and A.G. Williams, Unquenched gluon propagator in Landau gauge, Phys. Rev. D 70 (2004) 034509 [hep-lat/0402032] [INSPIRE].

    ADS  Google Scholar 

  2. A. Cucchieri, T. Mendes, O. Oliveira and P.J. Silva, Just how different are SU(2) and SU(3) Landau propagators in the IR regime?, Phys. Rev. D 76 (2007) 114507 [arXiv:0705.3367] [INSPIRE].

    ADS  Google Scholar 

  3. A. Cucchieri and T. Mendes, Numerical test of the Gribov-Zwanziger scenario in Landau gauge, PoS(QCD-TNT09)026 [arXiv:1001.2584] [INSPIRE].

  4. A. Cucchieri and T. Mendes, The saga of Landau-Gauge propagators: gathering new ammo, AIP Conf. Proc. 1343 (2011) 185 [arXiv:1101.4779] [INSPIRE].

    Article  ADS  Google Scholar 

  5. I.L. Bogolubsky, E.M. Ilgenfritz, M. Müller-Preussker and A. Sternbeck, Lattice gluodynamics computation of Landau gauge Greens functions in the deep infrared, Phys. Lett. B 676 (2009) 69 [arXiv:0901.0736] [INSPIRE].

    Article  ADS  Google Scholar 

  6. A. Sternbeck and M. Müller-Preussker, Lattice evidence for the family of decoupling solutions of Landau gauge Yang-Mills theory, Phys. Lett. B 726 (2013) 396 [arXiv:1211.3057] [INSPIRE].

    Article  ADS  Google Scholar 

  7. O. Oliveira and P.J. Silva, The lattice Landau gauge gluon propagator: lattice spacing and volume dependence, Phys. Rev. D 86 (2012) 114513 [arXiv:1207.3029] [INSPIRE].

    ADS  Google Scholar 

  8. A. Ayala, A. Bashir, D. Binosi, M. Cristoforetti and J. Rodríguez-Quintero, Quark flavour effects on gluon and ghost propagators, Phys. Rev. D 86 (2012) 074512 [arXiv:1208.0795] [INSPIRE].

    ADS  Google Scholar 

  9. P. Boucaud et al., IR finiteness of the ghost dressing function from numerical resolution of the ghost SD equation, JHEP 06 (2008) 012 [arXiv:0801.2721] [INSPIRE].

    Article  ADS  Google Scholar 

  10. P. Boucaud et al., The infrared behaviour of the pure Yang-Mills Green functions, Few Body Syst. 53 (2012) 387 [arXiv:1109.1936] [INSPIRE].

    Article  ADS  Google Scholar 

  11. A.C. Aguilar and J. Papavassiliou, Gluon mass generation in the PT-BFM scheme, JHEP 12 (2006) 012 [hep-ph/0610040] [INSPIRE].

    Article  ADS  Google Scholar 

  12. A.C. Aguilar, D. Binosi and J. Papavassiliou, Gluon and ghost propagators in the Landau gauge: deriving lattice results from Schwinger-Dyson equations, Phys. Rev. D 78 (2008) 025010 [arXiv:0802.1870] [INSPIRE].

    ADS  Google Scholar 

  13. M.R. Pennington and D.J. Wilson, Are the dressed gluon and ghost propagators in the Landau gauge presently determined in the confinement regime of QCD?, Phys. Rev. D 84 (2011) 119901 [arXiv:1109.2117] [INSPIRE].

    ADS  Google Scholar 

  14. S. Strauss, C.S. Fischer and C. Kellermann, Analytic structure of the Landau gauge gluon propagator, Phys. Rev. Lett. 109 (2012) 252001 [arXiv:1208.6239] [INSPIRE].

    Article  ADS  Google Scholar 

  15. D. Dudal, S.P. Sorella, N. Vandersickel and H. Verschelde, New features of the gluon and ghost propagator in the infrared region from the Gribov-Zwanziger approach, Phys. Rev. D 77 (2008) 071501 [arXiv:0711.4496] [INSPIRE].

    ADS  Google Scholar 

  16. D. Dudal, J.A. Gracey, S.P. Sorella, N. Vandersickel and H. Verschelde, A refinement of the Gribov-Zwanziger approach in the Landau gauge: infrared propagators in harmony with the lattice results, Phys. Rev. D 78 (2008) 065047 [arXiv:0806.4348] [INSPIRE].

    ADS  Google Scholar 

  17. D. Dudal, O. Oliveira and N. Vandersickel, Indirect lattice evidence for the refined Gribov-Zwanziger formalism and the gluon condensateA 2in the Landau gauge, Phys. Rev. D 81 (2010) 074505 [arXiv:1002.2374] [INSPIRE].

    ADS  Google Scholar 

  18. A. Cucchieri, D. Dudal, T. Mendes and N. Vandersickel, Modeling the gluon propagator in Landau gauge: lattice estimates of pole masses and dimension-two condensates, Phys. Rev. D 85 (2012) 094513 [arXiv:1111.2327] [INSPIRE].

    ADS  Google Scholar 

  19. O. Oliveira and P. Bicudo, Running gluon mass from Landau gauge lattice QCD propagator, J. Phys. G 38 (2011) 045003 [arXiv:1002.4151] [INSPIRE].

    Article  ADS  Google Scholar 

  20. P.O. Bowman, U.M. Heller and A.G. Williams, Lattice quark propagator with staggered quarks in Landau and Laplacian gauges, Phys. Rev. D 66 (2002) 014505 [hep-lat/0203001] [INSPIRE].

    ADS  Google Scholar 

  21. M.B. Parappilly et al., Scaling behavior of quark propagator in full QCD, Phys. Rev. D 73 (2006) 054504 [hep-lat/0511007] [INSPIRE].

    ADS  Google Scholar 

  22. M.S. Bhagwat, M.A. Pichowsky, C.D. Roberts and P.C. Tandy, Analysis of a quenched lattice QCD dressed quark propagator, Phys. Rev. C 68 (2003) 015203 [nucl-th/0304003] [INSPIRE].

    ADS  Google Scholar 

  23. S. Furui and H. Nakajima, Unquenched Kogut-Susskind quark propagator in lattice Landau gauge QCD, Phys. Rev. D 73 (2006) 074503 [INSPIRE].

    ADS  Google Scholar 

  24. D. Atkinson and P.W. Johnson, Bifurcation of the quark selfenergy: infrared and ultraviolet cutoffs, Phys. Rev. D 35 (1987) 1943 [INSPIRE].

    ADS  Google Scholar 

  25. D. Atkinson, V.P. Gusynin and P. Maris, Chiral symmetry breaking with the Curtis-Pennington vertex, Phys. Lett. B 303 (1993) 157 [hep-th/9211124] [INSPIRE].

    Article  ADS  Google Scholar 

  26. D. Atkinson, J.C.R. Bloch, V.P. Gusynin, M.R. Pennington and M. Reenders, Strong QED with weak gauge dependence: Critical coupling and anomalous dimension, Phys. Lett. B 329 (1994) 117 [INSPIRE].

    Article  ADS  Google Scholar 

  27. R. Alkofer, C.S. Fischer, F.J. Llanes-Estrada and K. Schwenzer, The quark-gluon vertex in Landau gauge QCD: its role in dynamical chiral symmetry breaking and quark confinement, Annals Phys. 324 (2009) 106 [arXiv:0804.3042] [INSPIRE].

    Article  MathSciNet  ADS  MATH  Google Scholar 

  28. M. Hopfer, A. Windisch and R. Alkofer, The quark-gluon vertex in Landau gauge QCD, PoS(Confinement X)073 [arXiv:1301.3672] [INSPIRE].

  29. J.S. Ball and T.-W. Chiu, Analytic properties of the vertex function in gauge theories. I, Phys. Rev. D 22 (1980) 2542 [INSPIRE].

    ADS  Google Scholar 

  30. C.J. Burden and C.D. Roberts, Gauge covariance and the fermion-photon vertex in three-dimensional and four-dimensional, massless quantum electrodynamics, Phys. Rev. D 47 (1993) 5581 [hep-th/9303098] [INSPIRE].

    ADS  Google Scholar 

  31. C.D. Roberts and A.G. Williams, Dyson-Schwinger equations and their application to hadronic physics, Prog. Part. Nucl. Phys. 33 (1994) 477 [hep-ph/9403224] [INSPIRE].

    Article  ADS  Google Scholar 

  32. H.J. Munczek, Dynamical chiral symmetry breaking, Goldstones theorem and the consistency of the Schwinger-Dyson and Bethe-Salpeter equations, Phys. Rev. D 52 (1995) 4736 [hep-th/9411239] [INSPIRE].

    ADS  Google Scholar 

  33. P. Maris and P.C. Tandy, Bethe-Salpeter study of vector meson masses and decay constants, Phys. Rev. C 60 (1999) 055214 [nucl-th/9905056] [INSPIRE].

    ADS  Google Scholar 

  34. P. Maris, C.D. Roberts and P.C. Tandy, Pion mass and decay constant, Phys. Lett. B 420 (1998) 267 [nucl-th/9707003] [INSPIRE].

    Article  ADS  Google Scholar 

  35. J.C. Ward, An identity in quantum electrodynamics, Phys. Rev. 78 (1950) 182 [INSPIRE].

    Article  ADS  MATH  Google Scholar 

  36. H.S. Green, A pre-renormalized quantum electrodynamics, Proc. Phys. Soc. A 66 (1953) 873 [INSPIRE].

    Article  ADS  Google Scholar 

  37. Y. Takahashi, On the generalized Ward identity, Nuovo Cim. 6 (1957) 371 [INSPIRE].

    Article  MATH  Google Scholar 

  38. G. Eichmann, R. Alkofer, I.C. Cloët, A. Krassnigg and C.D. Roberts, Perspective on rainbow-ladder truncation, Phys. Rev. C 77 (2008) 042202 [arXiv:0802.1948] [INSPIRE].

    ADS  Google Scholar 

  39. A. Bender, C.D. Roberts and L. Von Smekal, Goldstone theorem and diquark confinement beyond rainbow ladder approximation, Phys. Lett. B 380 (1996) 7 [nucl-th/9602012] [INSPIRE].

    Article  ADS  Google Scholar 

  40. A. Bender, W. Detmold, C.D. Roberts and A.W. Thomas, Bethe-Salpeter equation and a nonperturbative quark gluon vertex, Phys. Rev. C 65 (2002) 065203 [nucl-th/0202082] [INSPIRE].

    ADS  Google Scholar 

  41. P. Watson, W. Cassing and P.C. Tandy, Bethe-Salpeter meson masses beyond ladder approximation, Few Body Syst. 35 (2004) 129 [hep-ph/0406340] [INSPIRE].

    ADS  Google Scholar 

  42. P. Watson and W. Cassing, Unquenching the quark-antiquark Greens function, Few Body Syst. 35 (2004) 99 [hep-ph/0405287] [INSPIRE].

    ADS  Google Scholar 

  43. H.H. Matevosyan, A.W. Thomas and P.C. Tandy, quark-gluon vertex dressing and meson masses beyond ladder-rainbow truncation, Phys. Rev. C 75 (2007) 045201 [nucl-th/0605057] [INSPIRE].

    ADS  Google Scholar 

  44. C.S. Fischer and R. Williams, Probing the gluon self-interaction in light mesons, Phys. Rev. Lett. 103 (2009) 122001 [arXiv:0905.2291] [INSPIRE].

    Article  ADS  Google Scholar 

  45. A. Bashir et al., Collective perspective on advances in Dyson-Schwinger equation QCD, Commun. Theor. Phys. 58 (2012) 79 [arXiv:1201.3366] [INSPIRE].

    Article  MATH  Google Scholar 

  46. D.C. Curtis and M.R. Pennington, Truncating the Schwinger-Dyson equations: how multiplicative renormalizability and the Ward identity restrict the three point vertex in QED, Phys. Rev. D 42 (1990) 4165 [INSPIRE].

    ADS  Google Scholar 

  47. L. Chang and C.D. Roberts, Tracing masses of ground-state light-quark mesons, Phys. Rev. C 85 (2012) 052201 [arXiv:1104.4821] [INSPIRE].

    ADS  Google Scholar 

  48. T. Nguyen, N.A. Souchlas and P.C. Tandy, Soft and hard scale QCD dynamics in mesons, AIP Conf. Proc. 1361 (2011) 142 [arXiv:1005.3315] [INSPIRE].

    Article  ADS  Google Scholar 

  49. B. El-Bennich, M.A. Ivanov and C.D. Roberts, Flavourful hadronic physics, Nucl. Phys. Proc. Suppl. 199 (2010) 184 [arXiv:0910.4523] [INSPIRE].

    Article  ADS  Google Scholar 

  50. B. El-Bennich, M.A. Ivanov and C.D. Roberts, Strong D Dπ and B Bπ couplings, Phys. Rev. C 83 (2011) 025205 [arXiv:1012.5034] [INSPIRE].

    ADS  Google Scholar 

  51. B. El-Bennich, C.D. Roberts and M.A. Ivanov, Heavy-quark symmetries in the light of nonperturbative QCD approaches, PoS(QCD-TNT-II)018 [arXiv:1202.0454] [INSPIRE].

  52. A. Bashir and M.R. Pennington, Gauge independent chiral symmetry breaking in quenched QED, Phys. Rev. D 50 (1994) 7679 [hep-ph/9407350] [INSPIRE].

    ADS  Google Scholar 

  53. A. Bashir and M.R. Pennington, Constraint on the QED vertex from the mass anomalous dimension γ m = 1, Phys. Rev. D 53 (1996) 4694 [hep-ph/9510436] [INSPIRE].

    ADS  Google Scholar 

  54. Z.-H. Dong, H.J. Munczek and C.D. Roberts, Gauge covariant fermion propagator in quenched, chirally symmetric quantum electrodynamics, Phys. Lett. B 333 (1994) 536 [hep-ph/9403252] [INSPIRE].

    Article  ADS  Google Scholar 

  55. A. Bashir, A. Kızılersü and M.R. Pennington, The nonperturbative three point vertex in massless quenched QED and perturbation theory constraints, Phys. Rev. D 57 (1998) 1242 [hep-ph/9707421] [INSPIRE].

    ADS  Google Scholar 

  56. A. Bashir and A. Raya, Constructing the fermion-boson vertex in three-dimensional QED, Phys. Rev. D 64 (2001) 105001 [hep-ph/0103306] [INSPIRE].

    ADS  Google Scholar 

  57. A. Bashir, R. Bermudez, L. Chang and C.D. Roberts, Dynamical chiral symmetry breaking and the fermion-gauge-boson vertex, Phys. Rev. C 85 (2012) 045205 [arXiv:1112.4847] [INSPIRE].

    ADS  Google Scholar 

  58. S.-X. Qin, L. Chang, Y.-X. Liu, C.D. Roberts and S.M. Schmidt, Practical corollaries of transverse Ward-Green-Takahashi identities, Phys. Lett. B 722 (2013) 384 [arXiv:1302.3276] [INSPIRE].

    Article  ADS  Google Scholar 

  59. A.A. Slavnov, Ward identities in gauge theories, Theor. Math. Phys. 10 (1972) 99 [Teor. Mat. Fiz. 10 (1972) 153] [INSPIRE].

  60. J.C. Taylor, Ward identities and charge renormalization of the Yang-Mills field, Nucl. Phys. B 33 (1971) 436 [INSPIRE].

    Article  ADS  Google Scholar 

  61. W.J. Marciano and H. Pagels, Quantum chromodynamics: a review, Phys. Rept. 36 (1978) 137 [INSPIRE].

    Article  ADS  Google Scholar 

  62. P. Pascual and R. Tarrach, Slavnov-Taylor identities in Weinbergs renormalization scheme, Nucl. Phys. B 174 (1980) 123 [Erratum ibid. B 181 (1981) 546] [INSPIRE].

  63. C.S. Fischer and R. Alkofer, Nonperturbative propagators, running coupling and dynamical quark mass of Landau gauge QCD, Phys. Rev. D 67 (2003) 094020 [hep-ph/0301094] [INSPIRE].

    ADS  Google Scholar 

  64. J. Skullerud and A. Kızılersü, Quark gluon vertex from lattice QCD, JHEP 09 (2002) 013 [hep-ph/0205318] [INSPIRE].

    Article  ADS  Google Scholar 

  65. J.I. Skullerud, P.O. Bowman, A. Kızılersü, D.B. Leinweber and A.G. Williams, Nonperturbative structure of the quark gluon vertex, JHEP 04 (2003) 047 [hep-ph/0303176] [INSPIRE].

    Article  ADS  Google Scholar 

  66. A. Kizilersu, D.B. Leinweber, J.-I. Skullerud and A.G. Williams, Quark-gluon vertex in general kinematics, Eur. Phys. J. C 50 (2007) 871 [hep-lat/0610078] [INSPIRE].

    Article  ADS  Google Scholar 

  67. A.I. Davydychev, P. Osland and L. Saks, Quark gluon vertex in arbitrary gauge and dimension, Phys. Rev. D 63 (2001) 014022 [hep-ph/0008171] [INSPIRE].

    ADS  Google Scholar 

  68. A.C. Aguilar and J. Papavassiliou, Chiral symmetry breaking with lattice propagators, Phys. Rev. D 83 (2011) 014013 [arXiv:1010.5815] [INSPIRE].

    ADS  Google Scholar 

  69. A.C. Aguilar, D. Binosi, J.C. Cardona and J. Papavassiliou, Nonperturbative results on the quark-gluon vertex, PoS(Confinement X)103 [arXiv:1301.4057] [INSPIRE].

  70. J.C. Cardona, The non-perturbative quark-gluon vertex and the quark-ghost scattering amplitude (in Portuguese), Master’s Thesis, Universidade Federal do ABC, Santo André Brazil.

  71. D. Dudal, O. Oliveira and J. Rodríguez-Quintero, Nontrivial ghost-gluon vertex and the match of RGZ, DSE and lattice Yang-Mills propagators, Phys. Rev. D 86 (2012) 105005 [arXiv:1207.5118] [INSPIRE].

    ADS  Google Scholar 

  72. P. Boucaud, D. Dudal, J. Leroy, O. Pene and J. Rodríguez-Quintero, On the leading OPE corrections to the ghost-gluon vertex and the Taylor theorem, JHEP 12 (2011) 018 [arXiv:1109.3803] [INSPIRE].

    Article  ADS  Google Scholar 

  73. A.C. Aguilar, D. Ibáñez and J. Papavassiliou, Ghost propagator and ghost-gluon vertex from Schwinger-Dyson equations, Phys. Rev. D 87 (2013) 114020 [arXiv:1303.3609] [INSPIRE].

    ADS  Google Scholar 

  74. W.H. Press, S.A. Teukolsky, W.T. Vetterling and B.P. Flannery, Numerical recipes in Fortran 77: the art of scientific computing, Cambridge University Press (1992) [ISBN-9780521430647].

  75. A. Cucchieri and T. Mendes, Whats up with IR gluon and ghost propagators in Landau gauge? A puzzling answer from huge lattices, PoS(LATTICE 2007)297 [arXiv:0710.0412] [INSPIRE].

  76. P. Boucaud et al., Artefacts andA 2power corrections: reexamining Z ψ (p 2) and Z V in the momentum-subtraction scheme, Phys. Rev. D 74 (2006) 034505 [hep-lat/0504017] [INSPIRE].

    ADS  Google Scholar 

  77. P. Boucaud et al., Ghost-gluon running coupling, power corrections and the determination of \( {\Lambda_{{\mathrm{M}\overline{\mathrm{S}}}}} \), Phys. Rev. D 79 (2009) 014508 [arXiv:0811.2059] [INSPIRE].

    ADS  Google Scholar 

  78. F. James and M. Roos, Minuit: a system for function minimization and analysis of the parameter errors and correlations, Comput. Phys. Commun. 10 (1975) 343 [INSPIRE].

    Article  ADS  Google Scholar 

  79. A. Sternbeck, E.-M. Ilgenfritz, M. Müller-Preussker, A. Schiller and I.L. Bogolubsky, Lattice study of the infrared behavior of QCD Greens functions in Landau gauge, PoS(LAT2006)076 [hep-lat/0610053] [INSPIRE].

  80. R. Williams, Schwinger-Dyson equations in QED and QCD. The calculation of fermion-antifermion condensates, Ph.D. Thesis, Durham University, Durham U.K. (2007), available at http://etheses.dur.ac.uk/2558/.

  81. I. Aznauryan et al., Studies of nucleon resonance structure in exclusive meson electroproduction, Int. J. Mod. Phys. E 22 (2013) 1330015 [arXiv:1212.4891] [INSPIRE].

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to B. El-Bennich.

Additional information

ArXiv ePrint: 1306.3022

Rights and permissions

Reprints and permissions

About this article

Cite this article

Rojas, E., de Melo, J., El-Bennich, B. et al. On the quark-gluon vertex and quark-ghost kernel: combining lattice simulations with Dyson-Schwinger equations. J. High Energ. Phys. 2013, 193 (2013). https://doi.org/10.1007/JHEP10(2013)193

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/JHEP10(2013)193

Keywords

Navigation