Journal of High Energy Physics

, 2013:51

Noncommutative gauge theories on \( \mathbb{R}_{\theta}^2 \) as matrix models

  • Pierre Martinetti
  • Patrizia Vitale
  • Jean-Christophe Wallet
Open Access
Article

DOI: 10.1007/JHEP09(2013)051

Cite this article as:
Martinetti, P., Vitale, P. & Wallet, JC. J. High Energ. Phys. (2013) 2013: 51. doi:10.1007/JHEP09(2013)051

Abstract

We study a class of noncommutative gauge theory models on 2-dimensional Moyal space from the viewpoint of matrix models and explore some related properties. Expanding the action around symmetric vacua generates non local matrix models with polynomial interaction terms. For a particular vacuum, we can invert the kinetic operator which is related to a Jacobi operator. The resulting propagator can be expressed in terms of Chebyschev polynomials of second kind. We show that non vanishing correlations exist at large separations. General considerations on the kinetic operators stemming from the other class of symmetric vacua, indicate that only one class of symmetric vacua should lead to fast decaying propagators. The quantum stability of the vacuum is briefly discussed.

Keywords

Non-Commutative Geometry Gauge Symmetry Matrix Models Field Theories in Lower Dimensions 
Download to read the full article text

Copyright information

© SISSA 2013

Authors and Affiliations

  • Pierre Martinetti
    • 1
    • 2
  • Patrizia Vitale
    • 1
    • 2
  • Jean-Christophe Wallet
    • 3
  1. 1.Dipartimento di FisicaUniversità di Napoli Federico IINapoliItaly
  2. 2.INFN — Sezione di NapoliNapoliItaly
  3. 3.Laboratoire de Physique ThéoriqueOrsay CedexFrance

Personalised recommendations