Skip to main content
Log in

On cosmological constants from α′-corrections

Journal of High Energy Physics Aims and scope Submit manuscript

Abstract

We examine to what extent perturbative α′-corrections can generate a small cosmological constant in warped string compactifications. Focusing on the heterotic string at lowest order in the string loop expansion, we show that, for a maximally symmetric spacetime, the α′-corrected 4D scalar potential has no effect on the cosmological constant. The only relevant terms are instead higher order products of 4D Riemann tensors, which, however, are found to vanish in the usual perturbative regime of the α′-expansion. The heterotic string therefore only allows for 4D Minkowski vacua to all orders in α′, unless one also introduces string loop and/or nonperturbative corrections or allows for curvatures or field strengths that are large in string units. In particular, we find that perturbative α′-effects cannot induce weakly curved AdS4 solutions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. V. Balasubramanian, P. Berglund, J.P. Conlon and F. Quevedo, Systematics of moduli stabilisation in Calabi-Yau flux compactifications, JHEP 03 (2005) 007 [hep-th/0502058] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  2. K. Becker, M. Becker, M. Haack and J. Louis, Supersymmetry breaking and alpha-prime corrections to flux induced potentials, JHEP 06 (2002) 060 [hep-th/0204254] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  3. S.B. Giddings, S. Kachru and J. Polchinski, Hierarchies from fluxes in string compactifications, Phys. Rev. D 66 (2002) 106006 [hep-th/0105097] [INSPIRE].

    MathSciNet  ADS  Google Scholar 

  4. L. Anguelova and C. Quigley, Quantum corrections to heterotic moduli potentials, JHEP 02 (2011) 113 [arXiv:1007.5047] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  5. L. Anguelova, C. Quigley and S. Sethi, The leading quantum corrections to stringy Kähler potentials, JHEP 10 (2010) 065 [arXiv:1007.4793] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  6. M. Dine and N. Seiberg, Couplings and scales in superstring models, Phys. Rev. Lett. 55 (1985) 366 [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  7. M. Dine and N. Seiberg, Is the superstring weakly coupled?, Phys. Lett. B 162 (1985) 299 [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  8. O. DeWolfe, A. Giryavets, S. Kachru and W. Taylor, Type IIA moduli stabilization, JHEP 07 (2005) 066 [hep-th/0505160] [INSPIRE].

    MathSciNet  ADS  Google Scholar 

  9. S.S. Haque, G. Shiu, B. Underwood and T. Van Riet, Minimal simple de Sitter solutions, Phys. Rev. D 79 (2009) 086005 [arXiv:0810.5328] [INSPIRE].

    ADS  Google Scholar 

  10. C. Caviezel et al., On the cosmology of type IIA compactifications on SU(3)-structure manifolds, JHEP 04 (2009) 010 [arXiv:0812.3551] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  11. R. Flauger, S. Paban, D. Robbins and T. Wrase, Searching for slow-roll moduli inflation in massive type IIA supergravity with metric fluxes, Phys. Rev. D 79 (2009) 086011 [arXiv:0812.3886] [INSPIRE].

    ADS  Google Scholar 

  12. M.P. Hertzberg, S. Kachru, W. Taylor and M. Tegmark, Inflationary constraints on type IIA string theory, JHEP 12 (2007) 095 [arXiv:0711.2512] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  13. E. Silverstein, Simple de Sitter solutions, Phys. Rev. D 77 (2008) 106006 [arXiv:0712.1196] [INSPIRE].

    MathSciNet  ADS  Google Scholar 

  14. U.H. Danielsson, S.S. Haque, G. Shiu and T. Van Riet, Towards classical de Sitter solutions in string theory, JHEP 09 (2009) 114 [arXiv:0907.2041] [INSPIRE].

    Article  ADS  Google Scholar 

  15. B. de Carlos, A. Guarino and J.M. Moreno, Flux moduli stabilisation, supergravity algebras and no-go theorems, JHEP 01 (2010) 012 [arXiv:0907.5580] [INSPIRE].

    Article  Google Scholar 

  16. T. Wrase and M. Zagermann, On classical de Sitter vacua in string theory, Fortsch. Phys. 58 (2010) 906 [arXiv:1003.0029] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  17. O. Lechtenfeld, C. Nolle and A.D. Popov, Heterotic compactifications on nearly Kähler manifolds, JHEP 09 (2010) 074 [arXiv:1007.0236] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  18. A. Chatzistavrakidis, O. Lechtenfeld and A.D. Popov, Nearly Káhler heterotic compactifications with fermion condensates, JHEP 04 (2012) 114 [arXiv:1202.1278] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  19. S.R. Green, E.J. Martinec, C. Quigley and S. Sethi, Constraints on string cosmology, Class. Quant. Grav. 29 (2012) 075006 [arXiv:1110.0545] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  20. J. Held, D. Lüst, F. Marchesano and L. Martucci, DWSB in heterotic flux compactifications, JHEP 06 (2010) 090 [arXiv:1004.0867] [INSPIRE].

    Article  ADS  Google Scholar 

  21. B.A. Campbell, M.J. Duncan, N. Kaloper and K.A. Olive, Gravitational dynamics with Lorentz Chern-Simons terms, Nucl. Phys. B 351 (1991) 778 [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  22. B. Underwood, A breathing mode for warped compactifications, Class. Quant. Grav. 28 (2011) 195013 [arXiv:1009.4200] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  23. J. Derendinger, L.E. Ibáñez and H.P. Nilles, On the low-energy D = 4, N = 1 supergravity theory extracted from the D = 10, N = 1 superstring, Phys. Lett. B 155 (1985) 65 [INSPIRE].

    Article  ADS  Google Scholar 

  24. M. Dine, R. Rohm, N. Seiberg and E. Witten, Gluino condensation in superstring models, Phys. Lett. B 156 (1985) 55 [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  25. S. Kachru, R. Kallosh, A.D. Linde and S.P. Trivedi, De Sitter vacua in string theory, Phys. Rev. D 68 (2003) 046005 [hep-th/0301240] [INSPIRE].

    MathSciNet  ADS  Google Scholar 

  26. H. Kunitomo and M. Ohta, Supersymmetric AdS 3 solutions in heterotic supergravity, Prog. Theor. Phys. 122 (2009) 631 [arXiv:0902.0655] [INSPIRE].

    Article  ADS  MATH  Google Scholar 

  27. M.R. Douglas and R. Kallosh, Compactification on negatively curved manifolds, JHEP 06 (2010) 004 [arXiv:1001.4008] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  28. J. Blaback et al., Smeared versus localised sources in flux compactifications, JHEP 12 (2010) 043 [arXiv:1009.1877] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  29. F. Denef, Les Houches lectures on constructing string vacua, arXiv:0803.1194 [INSPIRE].

  30. R.M. Wald, General Relativity, University of Chicago Press, Chicago U.S.A. (1984).

    Book  MATH  Google Scholar 

  31. A. Strominger, Superstrings with torsion, Nucl. Phys. B 274 (1986) 253 [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  32. B. de Wit, D. Smit and N. Hari Dass, Residual supersymmetry of compactified D = 10 supergravity, Nucl. Phys. B 283 (1987) 165 [INSPIRE].

    Article  ADS  Google Scholar 

  33. J.M. Maldacena and C. Núñez, Supergravity description of field theories on curved manifolds and a no go theorem, Int. J. Mod. Phys. A 16 (2001) 822 [hep-th/0007018] [INSPIRE].

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Marco Zagermann.

Additional information

ArXiv ePrint: 1204.0807

Rights and permissions

Reprints and permissions

About this article

Cite this article

Gautason, F.F., Junghans, D. & Zagermann, M. On cosmological constants from α′-corrections. J. High Energ. Phys. 2012, 29 (2012). https://doi.org/10.1007/JHEP06(2012)029

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/JHEP06(2012)029

Keywords

Navigation