Skip to main content
Log in

The local potential approximation in quantum gravity

  • Published:
Journal of High Energy Physics Aims and scope Submit manuscript

Abstract

Within the context of the functional renormalization group flow of gravity, we suggest that a generic f (R) ansatz (i.e. not truncated to any specific form, polynomial or not) for the effective action plays a role analogous to the local potential approximation (LPA) in scalar field theory. In the same spirit of the LPA, we derive and study an ordinary differential equation for f (R) to be satisfied by a fixed point of the renormalization group flow. As a first step in trying to assess the existence of global solutions (i.e. true fixed point) for such equation, we investigate here the properties of its solutions by a comparison of various series expansions and numerical integrations. In particular, we study the analyticity conditions required because of the presence of fixed singularities in the equation, and we develop an expansion of the solutions for large R up to order N = 29. Studying the convergence of the fixed points of the truncated solutions with respect to N, we find a characteristic pattern for the location of the fixed points in the complex plane, with one point stemming out for its stability. Finally, we establish that if a non-Gaussian fixed point exists within the full f (R) approximation, it corresponds to an R 2 theory.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. S. Weinberg, Ultraviolet Divergences in Quantum Theories of Gravitation, in General Relativity S.W. Hawking and W. Israel eds., Cambridge University Press (1979).

  2. M. Niedermaier and M. Reuter, The Asymptotic Safety Scenario in Quantum Gravity, Living Rev. Rel. 9 (2006) 5.

    Google Scholar 

  3. R. Percacci, Asymptotic Safety, arXiv:0709.3851 [INSPIRE].

  4. D.F. Litim, Fixed Points of Quantum Gravity and the Renormalisation Group, arXiv:0810.3675 [INSPIRE].

  5. M. Reuter and F. Saueressig, Quantum Einstein Gravity, New J. Phys. 14 (2012) 055022 [arXiv:1202.2274] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  6. C. Wetterich, Exact evolution equation for the effective potential, Phys. Lett. B 301 (1993) 90 [INSPIRE].

    Article  ADS  Google Scholar 

  7. T.R. Morris, Elements of the continuous renormalization group, Prog. Theor. Phys. Suppl. 131 (1998) 395 [hep-th/9802039] [INSPIRE].

    Article  ADS  Google Scholar 

  8. C. Bagnuls and C. Bervillier, Exact renormalization group equations. An Introductory review, Phys. Rept. 348 (2001) 91 [hep-th/0002034] [INSPIRE].

    Article  MathSciNet  ADS  MATH  Google Scholar 

  9. J. Berges, N. Tetradis and C. Wetterich, Nonperturbative renormalization flow in quantum field theory and statistical physics, Phys. Rept. 363 (2002) 223 [hep-ph/0005122] [INSPIRE].

    Article  MathSciNet  ADS  MATH  Google Scholar 

  10. J.M. Pawlowski, Aspects of the functional renormalisation group, Annals Phys. 322 (2007) 2831 [hep-th/0512261] [INSPIRE].

    Article  MathSciNet  ADS  MATH  Google Scholar 

  11. H. Gies, Introduction to the functional RG and applications to gauge theories, hep-ph/0611146 [INSPIRE].

  12. B. Delamotte, An introduction to the nonperturbative renormalization group, cond-mat/0702365 [INSPIRE].

  13. D.F. Litim and D. Zappala, Ising exponents from the functional renormalisation group, Phys. Rev. D 83 (2011) 085009 [arXiv:1009.1948] [INSPIRE].

    ADS  Google Scholar 

  14. T.R. Morris, On truncations of the exact renormalization group, Phys. Lett. B 334 (1994) 355 [hep-th/9405190] [INSPIRE].

    Article  ADS  Google Scholar 

  15. L. Canet, B. Delamotte, D. Mouhanna and J. Vidal, Nonperturbative renormalization group approach to the Ising model: A Derivative expansion at order partial**4, Phys. Rev. B 68 (2003) 064421 [hep-th/0302227] [INSPIRE].

    Article  ADS  Google Scholar 

  16. M. Reuter, Nonperturbative evolution equation for quantum gravity, Phys. Rev. D 57 (1998) 971 [hep-th/9605030] [INSPIRE].

    MathSciNet  ADS  Google Scholar 

  17. D. Dou and R. Percacci, The running gravitational couplings, Class. Quant. Grav. 15 (1998) 3449 [hep-th/9707239] [INSPIRE].

    Article  MathSciNet  ADS  MATH  Google Scholar 

  18. O. Lauscher and M. Reuter, Ultraviolet fixed point and generalized flow equation of quantum gravity, Phys. Rev. D 65 (2002) 025013 [hep-th/0108040] [INSPIRE].

    MathSciNet  ADS  Google Scholar 

  19. D.F. Litim, Fixed points of quantum gravity, Phys. Rev. Lett. 92 (2004) 201301 [hep-th/0312114] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  20. L. Granda and S. Odintsov, Effective average action and nonperturbative renormalization group equation in higher derivative quantum gravity, Grav. Cosmol. 4 (1998) 85 [gr-qc/9801026] [INSPIRE].

    MathSciNet  ADS  MATH  Google Scholar 

  21. O. Lauscher and M. Reuter, Flow equation of quantum Einstein gravity in a higher derivative truncation, Phys. Rev. D 66 (2002) 025026 [hep-th/0205062] [INSPIRE].

    MathSciNet  ADS  Google Scholar 

  22. A. Codello, R. Percacci and C. Rahmede, Ultraviolet properties of f(R)-gravity, Int. J. Mod. Phys. A 23 (2008) 143 [arXiv:0705.1769] [INSPIRE].

    Article  ADS  Google Scholar 

  23. P.F. Machado and F. Saueressig, On the renormalization group flow of f(R)-gravity, Phys. Rev. D 77 (2008) 124045 [arXiv:0712.0445] [INSPIRE].

    MathSciNet  ADS  Google Scholar 

  24. A. Codello, R. Percacci and C. Rahmede, Investigating the Ultraviolet Properties of Gravity with a Wilsonian Renormalization Group Equation, Annals Phys. 324 (2009) 414 [arXiv:0805.2909] [INSPIRE].

    Article  MathSciNet  ADS  MATH  Google Scholar 

  25. A. Bonanno, A. Contillo and R. Percacci, Inflationary solutions in asymptotically safe f(R) theories, Class. Quant. Grav. 28 (2011) 145026 [arXiv:1006.0192] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  26. D. Benedetti, P.F. Machado and F. Saueressig, Asymptotic safety in higher-derivative gravity, Mod. Phys. Lett. A 24 (2009) 2233 [arXiv:0901.2984] [INSPIRE].

    Article  ADS  Google Scholar 

  27. R. Percacci and D. Perini, Asymptotic safety of gravity coupled to matter, Phys. Rev. D 68 (2003) 044018 [hep-th/0304222] [INSPIRE].

    ADS  Google Scholar 

  28. D. Benedetti, P.F. Machado and F. Saueressig, Taming perturbative divergences in asymptotically safe gravity, Nucl. Phys. B 824 (2010) 168 [arXiv:0902.4630] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  29. K. Groh and F. Saueressig, Ghost wave-function renormalization in Asymptotically Safe Quantum Gravity, J. Phys. A 43 (2010) 365403 [arXiv:1001.5032] [INSPIRE].

    MathSciNet  Google Scholar 

  30. A. Eichhorn and H. Gies, Ghost anomalous dimension in asymptotically safe quantum gravity, Phys. Rev. D 81 (2010) 104010 [arXiv:1001.5033] [INSPIRE].

    ADS  Google Scholar 

  31. E. Manrique and M. Reuter, Bimetric Truncations for Quantum Einstein Gravity and Asymptotic Safety, Annals Phys. 325 (2010) 785 [arXiv:0907.2617] [INSPIRE].

    Article  MathSciNet  ADS  MATH  Google Scholar 

  32. E. Manrique, M. Reuter and F. Saueressig, Bimetric Renormalization Group Flows in Quantum Einstein Gravity, Annals Phys. 326 (2011) 463 [arXiv:1006.0099] [INSPIRE].

    Article  MathSciNet  ADS  MATH  Google Scholar 

  33. J.F. Donoghue, General relativity as an effective field theory: The leading quantum corrections, Phys. Rev. D 50 (1994) 3874 [gr-qc/9405057] [INSPIRE].

    ADS  Google Scholar 

  34. T.P. Sotiriou and V. Faraoni, f(R) Theories Of Gravity, Rev. Mod. Phys. 82 (2010) 451 [arXiv:0805.1726] [INSPIRE].

    Article  MathSciNet  ADS  MATH  Google Scholar 

  35. A. De Felice and S. Tsujikawa, f(R) theories, Living Rev. Rel. 13 (2010) 3 [arXiv:1002.4928] [INSPIRE].

    Google Scholar 

  36. A. Hasenfratz and P. Hasenfratz, Renormalization Group Study of Scalar Field Theories, Nucl. Phys. B 270 (1986) 687 [INSPIRE].

    Article  ADS  Google Scholar 

  37. G. Felder, Renormalization Group in the Local Potential Approximation, Commun. Math. Phys. 111 (1987) 101.

    Article  MathSciNet  ADS  MATH  Google Scholar 

  38. G. ’t Hooft and M. Veltman, One loop divergencies in the theory of gravitation, Annales Poincaré Phys. Theor. A 20 (1974) 69 [INSPIRE].

    MathSciNet  ADS  Google Scholar 

  39. M.H. Goroff and A. Sagnotti, The Ultraviolet Behavior of Einstein Gravity, Nucl. Phys. B 266 (1986) 709 [INSPIRE].

    Article  ADS  Google Scholar 

  40. D. Benedetti, Asymptotic safety goes on shell, New J. Phys. 14 (2012) 015005 [arXiv:1107.3110] [INSPIRE].

    Article  ADS  Google Scholar 

  41. J. Comellas and A. Travesset, O (N) models within the local potential approximation, Nucl. Phys. B 498 (1997) 539 [hep-th/9701028] [INSPIRE].

    Article  ADS  Google Scholar 

  42. A. Bonanno, An effective action for asymptotically safe gravity, Phys. Rev. D 85 (2012) 081503 [arXiv:1203.1962] [INSPIRE].

    ADS  Google Scholar 

  43. M. Hindmarsh and I.D. Saltas, f(R) Gravity from the renormalisation group, arXiv:1203.3957 [INSPIRE].

  44. S. Domazet and H. Stefancic, Renormalization group scale-setting from the action: A Road to modified gravity theories, arXiv:1204.1483 [INSPIRE].

  45. M.A. Rubin and C.R. Ordonez, Eigenvalues and degeneracies for n-dimensional tensor spherical harmonics, J. Math. Phys. 25 (1975) 2888.

    Article  MathSciNet  ADS  Google Scholar 

  46. D.F. Litim, Optimized renormalization group flows, Phys. Rev. D 64 (2001) 105007 [hep-th/0103195] [INSPIRE].

    ADS  Google Scholar 

  47. M. Reuter and H. Weyer, Conformal sector of Quantum Einstein Gravity in the local potential approximation: Non-Gaussian fixed point and a phase of unbroken diffeomorphism invariance, Phys. Rev. D 80 (2009) 025001 [arXiv:0804.1475] [INSPIRE].

    ADS  Google Scholar 

  48. W.-S. Dai and M. Xie, The number of eigenstates: counting function and heat kernel, JHEP 02 (2009) 033 [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  49. G. Cognola, E. Elizalde, S. Nojiri, S.D. Odintsov and S. Zerbini, One-loop f(R) gravity in de Sitter universe, JCAP 02 (2005) 010 [hep-th/0501096] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dario Benedetti.

Additional information

ArXiv ePrint: 1204.3541

Rights and permissions

Reprints and permissions

About this article

Cite this article

Benedetti, D., Caravelli, F. The local potential approximation in quantum gravity. J. High Energ. Phys. 2012, 17 (2012). https://doi.org/10.1007/JHEP06(2012)017

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/JHEP06(2012)017

Keywords

Navigation