Skip to main content
Log in

Chern-Simons theory and S-duality

  • Published:
Journal of High Energy Physics Aims and scope Submit manuscript

Abstract

We study S-dualities in analytically continued SL(2) Chern-Simons theory on a 3-manifold M. By realizing Chern-Simons theory via a compactification of a 6d five-brane theory on M, various objects and symmetries in Chern-Simons theory become related to objects and operations in dual 2d, 3d, and 4d theories. For example, the space of flat SL(2, \( \mathbb{C} \)) connections on M is identified with the space of supersymmetric vacua in a dual 3d gauge theory. The hidden symmetry of SL(2) Chern-Simons theory can be identified as the S-duality transformation of \( \mathcal{N}=4 \) super-Yang-Mills theory (obtained by compactifying the five-brane theory on a torus); whereas the mapping class group action in Chern-Simons theory on a three-manifold M with boundary C is realized as S-duality in 4d \( \mathcal{N}=2 \) super-Yang-Mills theory associated with the Riemann surface C. We illustrate these symmetries by considering simple examples of 3-manifolds that include knot complements and punctured torus bundles, on the one hand, and mapping cylinders associated with mapping class group transformations, on the other. A generalization of mapping class group actions further allows us to study the transformations between several distinguished coordinate systems on the phase space of Chern-Simons theory, the SL(2) Hitchin moduli space.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. T. Dimofte, S. Gukov and L. Hollands, Vortex counting and Lagrangian 3-manifolds, Lett. Math. Phys. 98 (2011) 225 [arXiv:1006.0977] [INSPIRE].

    Article  MathSciNet  ADS  MATH  Google Scholar 

  2. S. Cecotti, A. Neitzke and C. Vafa, R-twisting and 4D/2D correspondences, arXiv:1006.3435 [INSPIRE].

  3. E. Witten, Fivebranes and knots, arXiv:1101.3216 [INSPIRE].

  4. L.F. Alday, D. Gaiotto and Y. Tachikawa, Liouville correlation functions from four-dimensional gauge theories, Lett. Math. Phys. 91 (2010) 167 [arXiv:0906.3219] [INSPIRE].

    Article  MathSciNet  ADS  MATH  Google Scholar 

  5. R. Lawrence and D. Zagier, Modular forms and quantum invariants of 3-manifolds, Asian J. Math. 3 (1999) 93.

    MathSciNet  MATH  Google Scholar 

  6. K. Hikami and A.N. Kirillov, Torus knot and minimal model, Phys. Lett. B 575 (2003) 343 [hep-th/0308152] [INSPIRE].

    MathSciNet  ADS  Google Scholar 

  7. K. Hikami, On the quantum invariant for the Brieskorn homology spheres, Int. J. Math. 16 (1005) 661 [math-ph/0405028].

  8. S. Gukov and D. Zagier, unpublished communication.

  9. D. Zagier, Quantum modular forms, Quanta Maths Clay Math. Proc. 11 (2010) 659, AMS, Providence U.S.A. (2010).

  10. T. Dimofte, S. Gukov, J. Lenells and D. Zagier, Exact results for perturbative Chern-Simons theory with complex gauge group, Commun. Num. Theor. Phys. 3 (2009) 363 [arXiv:0903.2472] [INSPIRE].

    MathSciNet  MATH  Google Scholar 

  11. T. Dimofte, Quantum Riemann surfaces in Chern-Simons theory, arXiv:1102.4847 [INSPIRE].

  12. S. Gukov and E. Witten, Branes and quantization, Adv. Theor. Math. Phys. 13 (2009) 1445 [arXiv:0809.0305] [INSPIRE].

    MathSciNet  MATH  Google Scholar 

  13. E. Witten, A new look at the path integral of quantum mechanics, arXiv:1009.6032 [INSPIRE].

  14. D. Gaiotto, N = 2 dualities, JHEP 08 (2012) 034 [arXiv:0904.2715] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  15. N. Nekrasov and E. Witten, The omega deformation, branes, integrability and Liouville theory, JHEP 09 (2010) 092 [arXiv:1002.0888] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  16. S. Gukov, Three-dimensional quantum gravity, Chern-Simons theory and the A polynomial, Commun. Math. Phys. 255 (2005) 577 [hep-th/0306165] [INSPIRE].

    Article  MathSciNet  ADS  MATH  Google Scholar 

  17. E. Witten, Analytic continuation of Chern-Simons theory, arXiv:1001.2933 [INSPIRE].

  18. L. Chekhov and V. Fock, Quantum Teichmüller space, Theor. Math. Phys. 120 (1999) 1245 [Teor. Mat. Fiz. 120 (1999) 511] [math.QA/9908165] [INSPIRE].

  19. R. Kashaev, Quantization of Teichmüller spaces and the quantum dilogarithm, Lett. Math. Phys. 43 (1998) 105 [INSPIRE].

    Article  MathSciNet  MATH  Google Scholar 

  20. J. Teschner, An analog of a modular functor from quantized Teichmüller theory, in Handbook of Teichmüller Theory, Vol. I, (2007), pg. 685 [math.QA/0510174] [INSPIRE].

  21. J. Teschner, On the relation between quantum Liouville theory and the quantized Teichmüller spaces, Int. J. Mod. Phys. A 19 (2004) 459 [hep-th/0303149] [INSPIRE].

    MathSciNet  ADS  Google Scholar 

  22. H.L. Verlinde, Conformal field theory, 2D quantum gravity and quantization of Teichmüller space, Nucl. Phys. B 337 (1990) 652 [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  23. A.B. Zamolodchikov and A.B. Zamolodchikov, Structure constants and conformal bootstrap in Liouville field theory, Nucl. Phys. B 477 (1996) 577 [hep-th/9506136] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  24. J. Teschner, Liouville theory revisited, Class. Quant. Grav. 18 (2001) R153 [hep-th/0104158] [INSPIRE].

    Article  MathSciNet  ADS  MATH  Google Scholar 

  25. V.V. Fock and A.B. Goncharov, Moduli spaces of local systems and higher Teichmüller theory, Publ. Math. Inst. Hautes Etudes Sci. 103 (2006) 1 [math.AG/0311149].

  26. N. Wyllard, A N − 1 conformal Toda field theory correlation functions from conformal N = 2 SU(N) quiver gauge theories, JHEP 11 (2009) 002 [arXiv:0907.2189] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  27. L.F. Alday, D. Gaiotto, S. Gukov, Y. Tachikawa and H. Verlinde, Loop and surface operators in N = 2 gauge theory and Liouville modular geometry, JHEP 01 (2010) 113 [arXiv:0909.0945] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  28. N. Drukker, J. Gomis, T. Okuda and J. Teschner, Gauge theory loop operators and Liouville theory, JHEP 02 (2010) 057 [arXiv:0909.1105] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  29. E.P. Verlinde, Fusion rules and modular transformations in 2D conformal field theory, Nucl. Phys. B 300 (1988) 360 [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  30. C. Vafa and E. Witten, A strong coupling test of S duality, Nucl. Phys. B 431 (1994) 3 [hep-th/9408074] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  31. N. Drukker, D. Gaiotto and J. Gomis, The virtue of defects in 4D gauge theories and 2D CFTs, JHEP 06 (2011) 025 [arXiv:1003.1112] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  32. D. Gaiotto and E. Witten, S-duality of boundary conditions in N = 4 super Yang-Mills theory, Adv. Theor. Math. Phys. 13 (2009) 721 [arXiv:0807.3720] [INSPIRE].

    MathSciNet  MATH  Google Scholar 

  33. K. Hosomichi, S. Lee and J. Park, AGT on the S-duality wall, JHEP 12 (2010) 079 [arXiv:1009.0340] [INSPIRE].

    Article  ADS  Google Scholar 

  34. Y. Terashima and M. Yamazaki, SL(2, R) Chern-Simons, Liouville and gauge theory on duality walls, JHEP 08 (2011) 135 [arXiv:1103.5748] [INSPIRE].

    Article  ADS  Google Scholar 

  35. G.W. Moore and N. Seiberg, Classical and quantum conformal field theory, Commun. Math. Phys. 123 (1989) 177 [INSPIRE].

    Article  MathSciNet  ADS  MATH  Google Scholar 

  36. V.V. Fock and A.B. Goncharov, The quantum dilogarithm and representations of quantum cluster varieties, Invent. Math. 175 (2008) 223 [math.QA/0702397].

    Article  MathSciNet  ADS  Google Scholar 

  37. J. Teschner, From Liouville theory to the quantum geometry of Riemann surfaces, contributed to 14th International Congress On Mathematical Physics, Lisbon Portugal, July 28–August 2 2003 [hep-th/0308031] [INSPIRE].

  38. N. Hitchin, The self-duality equations on a Riemann surface, Proc. London Math. Soc. 55 (1987) 59.

    Article  MathSciNet  MATH  Google Scholar 

  39. D. Cooper, M. Culler, H. Gillet and D. Long, Plane curves associated to character varieties of 3-manifolds, Invent. Math. 118 (1994) 47.

    Article  MathSciNet  ADS  MATH  Google Scholar 

  40. M. Bershadsky, A. Johansen, V. Sadov and C. Vafa, Topological reduction of 4D SYM to 2D σ-models, Nucl. Phys. B 448 (1995) 166 [hep-th/9501096] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  41. A. Kapustin and E. Witten, Electric-magnetic duality and the geometric Langlands program, Commun. Num. Theor. Phys. 1 (2007) 1 [hep-th/0604151] [INSPIRE].

    MathSciNet  MATH  Google Scholar 

  42. S. Gukov, Quantization via mirror symmetry, arXiv:1011.2218 [INSPIRE].

  43. R. Fricke and F. Klein, Vorlesungen uber die Theorie der automorphen Funktionen. Vol. I, II. (in Germany), Teubner, Leipzig Germany (1897).

  44. W.P. Thurston, Minimal stretch maps between hyperbolic surfaces, math.GT/9801039.

  45. R.C. Penner, The decorated Teichmüller space of punctured surfaces, Commun. Math. Phys. 113 (1987) 299.

    Article  MathSciNet  ADS  MATH  Google Scholar 

  46. R.C. Penner, Weil-Petersson volumes, J. Diff. Geom. 35 (1992) 559.

    MathSciNet  MATH  Google Scholar 

  47. V. Fock, Description of moduli space of projective structures via fat graphs, hep-th/9312193 [INSPIRE].

  48. V.V. Fock, Dual Teichmüller spaces, dg-ga/9702018.

  49. T. Dimofte, D. Gaiotto and R. van der Veen, RG domain walls and hybrid triangulations, arXiv:1304.6721 [INSPIRE].

  50. F. Bonahon, Shearing hyperbolic surfaces, bending pleated surfaces and Thurstons symplectic form, Ann. Fac. Sci. Toulouse Math. (6) 5 (1996) 233.

    Google Scholar 

  51. D. Gaiotto, G.W. Moore and A. Neitzke, Wall-crossing, Hitchin systems and the WKB approximation, arXiv:0907.3987 [INSPIRE].

  52. W. Fenchel and J. Nielsen, Discontinuous groups of isometries in the hyperbolic plane, A.L. Schmidt ed., de Gruyter Studies in Mathematics 29 (2003).

  53. S. Wolpert, The Fenchel-Nielsen deformation, Ann. Math. 115 (1982) 501.

    Article  MathSciNet  MATH  Google Scholar 

  54. S. Wolpert, On the symplectic geometry of deformations of a hyperbolic surface, Ann. Math. 117 (1983) 207.

    Article  MathSciNet  MATH  Google Scholar 

  55. T. Okai, Effects of a change of pants decompositions on their Fenchel-Nielsen coordinates, Kobe J. Math. 10 (1993) 215.

    MathSciNet  MATH  Google Scholar 

  56. N. Nekrasov, A. Rosly and S. Shatashvili, Darboux coordinates, Yang-Yang functional and gauge theory, Nucl. Phys. Proc. Suppl. 216 (2011) 69 [arXiv:1103.3919] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  57. J. Teschner, Quantization of the Hitchin moduli spaces, Liouville theory and the geometric Langlands correspondence I, Adv. Theor. Math. Phys. 15 (2011) 471 [arXiv:1005.2846] [INSPIRE].

    MathSciNet  MATH  Google Scholar 

  58. T. Okuda and V. Pestun, On the instantons and the hypermultiplet mass of N = 2* super Yang-Mills on S 4, JHEP 03 (2012) 017 [arXiv:1004.1222] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  59. N. Drukker, D.R. Morrison and T. Okuda, Loop operators and S-duality from curves on Riemann surfaces, JHEP 09 (2009) 031 [arXiv:0907.2593] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  60. N. Seiberg and E. Witten, Electric-magnetic duality, monopole condensation and confinement in N = 2 supersymmetric Yang-Mills theory, Nucl. Phys. B 426 (1994) 19 [Erratum ibid. B 430 (1994) 485] [hep-th/9407087] [INSPIRE].

  61. A. Klemm, W. Lerche, P. Mayr, C. Vafa and N.P. Warner, Selfdual strings and N = 2 supersymmetric field theory, Nucl. Phys. B 477 (1996) 746 [hep-th/9604034] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  62. E. Witten, Quantum field theory and the Jones polynomial, Commun. Math. Phys. 121 (1989) 351 [INSPIRE].

    Article  MathSciNet  ADS  MATH  Google Scholar 

  63. L. Rozansky, A contribution to the trivial connection to Jones polynomial and Wittens invariant of 3D manifolds. 1, Commun. Math. Phys. 175 (1996) 275 [hep-th/9401061] [INSPIRE].

    Article  MathSciNet  ADS  MATH  Google Scholar 

  64. R. Kashaev, The quantum dilogarithm and Dehn twists in quantum Teichmüller theory, in Integrable structures of exactly solvable two-dimensional models of quantum field theory, Kiev Russia 2000), NATO Sci. Ser. II Math. Phys. Chem. 35 (2001) 211.

  65. Y. Terashima and M. Yamazaki, Semiclassical analysis of the 3D/3D relation, arXiv:1106.3066 [INSPIRE].

  66. W.M. Goldman and W.D. Neumann, Homological action of the modular group on some cubic moduli spaces, Math. Res. Lett. 12 (2004) 575 [math.GT/0402039].

    MathSciNet  Google Scholar 

  67. S. Gukov, Gauge theory and knot homologies, Fortsch. Phys. 55 (2007) 473 [arXiv:0706.2369] [INSPIRE].

    Article  MathSciNet  ADS  MATH  Google Scholar 

  68. N.A. Nekrasov and S.L. Shatashvili, Quantization of integrable systems and four dimensional gauge theories, arXiv:0908.4052 [INSPIRE].

  69. K.A. Intriligator and N. Seiberg, Mirror symmetry in three-dimensional gauge theories, Phys. Lett. B 387 (1996) 513 [hep-th/9607207] [INSPIRE].

    MathSciNet  ADS  Google Scholar 

  70. A. D’Adda, A. Davis, P. Di Vecchia and P. Salomonson, An effective action for the supersymmetric CP n−1 model, Nucl. Phys. B 222 (1983) 45 [INSPIRE].

    Article  ADS  Google Scholar 

  71. E. Witten, Phases of N = 2 theories in two-dimensions, Nucl. Phys. B 403 (1993) 159 [hep-th/9301042] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  72. A. Hanany and K. Hori, Branes and N = 2 theories in two-dimensions, Nucl. Phys. B 513 (1998) 119 [hep-th/9707192] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  73. K. Hori and C. Vafa, Mirror symmetry, hep-th/0002222 [INSPIRE].

  74. E. Witten, SL(2, Z) action on three-dimensional conformal field theories with Abelian symmetry, hep-th/0307041 [INSPIRE].

  75. A. Kapustin, B. Willett and I. Yaakov, Exact results for Wilson loops in superconformal Chern-Simons theories with matter, JHEP 03 (2010) 089 [arXiv:0909.4559] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  76. L. Faddeev, Discrete Heisenberg-Weyl group and modular group, Lett. Math. Phys. 34 (1995) 249 [hep-th/9504111] [INSPIRE].

    Article  MathSciNet  ADS  MATH  Google Scholar 

  77. A.Y. Volkov, Noncommutative hypergeometry, Commun. Math. Phys. 258 (2005) 257 [math.QA/0312084] [INSPIRE].

    Article  ADS  MATH  Google Scholar 

  78. L.O. Chekhov and R.C. Penner, On quantizing Teichmüller and Thurston theories, in Handbook of Teichmüller Theory, vol. I, IRMA Lect. Math. Theor. Phys. 11 (2007) 579.

  79. V.G. Turaev, Skein quantization of Poisson algebras of loops on surfaces, Ann. Sci. Ecole Norm. Sup. (4) 24 (1991) 635.

    Google Scholar 

  80. D. Gaiotto, G.W. Moore and A. Neitzke, Framed BPS states, arXiv:1006.0146 [INSPIRE].

  81. T. Hausel and M. Thaddeus, Mirror symmetry, Langlands duality and the Hitchin system, Invent. Math. 153 (2003) 197 [math.AG/0205236] [INSPIRE].

    Article  MathSciNet  ADS  MATH  Google Scholar 

  82. A. Champanerkar, A-polynomial and Bloch invariants of hyperbolic 3-manifolds, Ph.D. thesis, Columbia University U.S.A. (2003).

  83. A. Strominger, S.-T. Yau and E. Zaslow, Mirror symmetry is T duality, Nucl. Phys. B 479 (1996) 243 [hep-th/9606040] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  84. M. Kashiwara, D-modules and microlocal calculus, Transl. Math. Monogr. Amer. Math. Soc. 217 (2000) xvi+254.

  85. S. Garoufalidis, On the characteristic and deformation varieties of a knot, Geom. Topol. Monogr. 7 (2004) 291 [math.GT/0306230].

    Article  MathSciNet  Google Scholar 

  86. K. Hikami, Difference equation of the colored Jones polynomial for torus knot, Int. J. Math. 15 (2004) 959 [math.GT/0403224].

    Article  MathSciNet  MATH  Google Scholar 

  87. W.M. Goldman, Trace coordinates on Fricke spaces of some simple hyperbolic surfaces, in Handbook of Teichmüller Theory, vol. II, IRMA Lect. Math. Theor. Phys. 13 (2009) 611 [arXiv:0901.1404].

  88. S. Wolpert, The length spectra as moduli for compact Riemann surfaces, Ann. Math. 109 (1979) 323.

    Article  MathSciNet  MATH  Google Scholar 

  89. W. Fenchel, Elementary geometry in hyperbolic space, de Gruyter Studies in Mathematics 11 (1989) xii+225.

  90. C. Kourouniotis, Complex length coordinates for quasi-Fuchsian groups, Mathematika 41 (1994) 173.

    Article  MathSciNet  MATH  Google Scholar 

  91. S.P. Tan, Complex Fenchel-Nielsen coordinates for quasi-Fuchsian structures, Internat. J. Math. 5 (1994) 239.

    Article  MathSciNet  MATH  Google Scholar 

  92. W.M. Goldman, The complex-symplectic geometry of SL(2, C)-characters over surfaces, in Algebraic groups and arithmetic, Tata Inst. Fund. Res., Mumbai India (2004), pg. 375 [math.DG/0304307].

  93. E. Barnes, The genesis of the double gamma functions, Proc. London Math. Soc. 31 (1899) 358.

    Article  MATH  Google Scholar 

  94. L. Faddeev and R. Kashaev, Quantum dilogarithm, Mod. Phys. Lett. A 9 (1994) 427 [hep-th/9310070] [INSPIRE].

    MathSciNet  ADS  Google Scholar 

  95. K. Hikami, Generalized volume conjecture and the A-polynomials: the Neumann-Zagier potential function as a classical limit of quantum invariant, J. Geom. Phys. 57 (2007) 1895 [math.QA/0604094] [INSPIRE].

    Article  MathSciNet  ADS  MATH  Google Scholar 

  96. L. Faddeev, R. Kashaev and A.Y. Volkov, Strongly coupled quantum discrete Liouville theory. 1. Algebraic approach and duality, Commun. Math. Phys. 219 (2001) 199 [hep-th/0006156] [INSPIRE].

    Article  MathSciNet  ADS  MATH  Google Scholar 

  97. B. Ponsot and J. Teschner, Clebsch-Gordan and Racah-Wigner coefficients for a continuous series of representations of U q (sl(2, R)), Commun. Math. Phys. 224 (2001) 613 [math.QA/0007097] [INSPIRE].

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tudor Dimofte.

Additional information

ArXiv ePrint: 1106.4550

Rights and permissions

Reprints and permissions

About this article

Cite this article

Dimofte, T., Gukov, S. Chern-Simons theory and S-duality. J. High Energ. Phys. 2013, 109 (2013). https://doi.org/10.1007/JHEP05(2013)109

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/JHEP05(2013)109

Keywords

Navigation