Towards the fast scrambling conjecture
 Nima Lashkari,
 Douglas Stanford,
 Matthew Hastings,
 Tobias Osborne,
 Patrick Hayden
 … show all 5 hide
Rent the article at a discount
Rent now* Final gross prices may vary according to local VAT.
Get AccessAbstract
Many proposed quantum mechanical models of black holes include highly nonlocal interactions. The time required for thermalization to occur in such models should reflect the relaxation times associated with classical black holes in general relativity. Moreover, the time required for a particularly strong form of thermalization to occur, sometimes known as scrambling, determines the time scale on which black holes should start to release information. It has been conjectured that black holes scramble in a time logarithmic in their entropy, and that no system in nature can scramble faster. In this article, we address the conjecture from two directions. First, we exhibit two examples of systems that do indeed scramble in logarithmic time: Brownian quantum circuits and the antiferromagnetic Ising model on a sparse random graph. Unfortunately, both fail to be truly ideal fast scramblers for reasons we discuss. Second, we use LiebRobinson techniques to prove a logarithmic lower bound on the scrambling time of systems with finite norm terms in their Hamiltonian. The bound holds in spite of any nonlocal structure in the Hamiltonian, which might permit every degree of freedom to interact directly with every other one.
 L. Susskind, Some speculations about black hole entropy in string theory, hepth/9309145 [INSPIRE].
 Sen, A (1995) Extremal black holes and elementary string states. Mod. Phys. Lett. A 10: pp. 2081 CrossRef
 Strominger, A, Vafa, C (1996) Microscopic origin of the BekensteinHawking entropy. Phys. Lett. B 379: pp. 99 CrossRef
 Callan, CG, Maldacena, JM (1996) Dbrane approach to black hole quantum mechanics. Nucl. Phys. B 472: pp. 591 CrossRef
 Das, SR, Mathur, SD (1996) Excitations of D strings, entropy and duality. Phys. Lett. B 375: pp. 103 CrossRef
 Maldacena, JM, Susskind, L (1996) Dbranes and fat black holes. Nucl. Phys. B 475: pp. 679 CrossRef
 Horowitz, GT, Polchinski, J (1997) A correspondence principle for black holes and strings. Phys. Rev. D 55: pp. 6189
 Banks, T, Fischler, W, Shenker, S, Susskind, L (1997) M theory as a matrix model: a conjecture. Phys. Rev. D 55: pp. 5112
 Maldacena, JM (1998) The largeN limit of superconformal field theories and supergravity. Adv. Theor. Math. Phys. 2: pp. 231
 Maldacena, JM (2003) Eternal black holes in antide Sitter. JHEP 04: pp. 021 CrossRef
 Balasubramanian, V, Czech, B (2011) Quantitative approaches to information recovery from black holes. Class. Quant. Grav. 28: pp. 163001 CrossRef
 Page, DN (1993) Average entropy of a subsystem. Phys. Rev. Lett. 71: pp. 1291 CrossRef
 D.N. Page, Black hole information, in Proceedings of the 5^{th} Canadian conference on general relativity and relativistic astrophysics, R.B. Mann and R.G. McLenaghan eds., (1993) [hepth/9305040] [INSPIRE].
 Susskind, L, Thorlacius, L, Uglum, J (1993) The stretched horizon and black hole complementarity. Phys. Rev. D 48: pp. 3743
 Hayden, P, Preskill, J (2007) Black holes as mirrors: quantum information in random subsystems. JHEP 09: pp. 120 CrossRef
 Kiem, Y, Verlinde, HL, Verlinde, EP (1995) Black hole horizons and complementarity. Phys. Rev. D 52: pp. 7053
 Lowe, DA, Polchinski, J, Susskind, L, Thorlacius, L, Uglum, J (1995) Black hole complementarity versus locality. Phys. Rev. D 52: pp. 6997
 Sekino, Y, Susskind, L (2008) Fast scramblers. JHEP 10: pp. 065 CrossRef
 L. Susskind, Addendum to fast scramblers, arXiv:1101.6048 [INSPIRE].
 Dankert, C, Cleve, R, Emerson, J, Livine, E (2009) Exact and approximate unitary 2designs and their application to fidelity estimation. Phys. Rev. A 80: pp. 012304 CrossRef
 Emerson, J, Livine, E, Lloyd, S (2005) Convergence conditions for random quantum circuits. Phys. Rev. A 72: pp. 060302 CrossRef
 Harrow, AW, Low, RA (2009) Random quantum circuits are approximate 2designs. Commun. Math. Phys. 291: pp. 257 CrossRef
 Arnaud, L, Braun, D (2008) Efficiency of producing random unitary matrices with quantum circuits. Phys. Rev. A 78: pp. 062329 CrossRef
 Brown, WG, Viola, L (2010) Convergence rates for arbitrary statistical moments of random quantum circuits. Phys. Rev. Lett. 104: pp. 250501 CrossRef
 Diniz, IT, Jonathan, D (2011) Comment on the paper “random quantum circuits are approximate 2designs”. Commun. Math. Phys. 304: pp. 281 CrossRef
 Lieb, E, Robinson, D (1972) The finite group velocity of quantum spin systems. Commun. Math. Phys. 28: pp. 251 CrossRef
 Nachtergaele, B, Sims, R (2006) LiebRobinson bounds and the exponential clustering theorem. Commun. Math. Phys. 265: pp. 119 CrossRef
 Hastings, MB, Koma, T (2006) Spectral gap and exponential decay of correlations. Commun. Math. Phys. 265: pp. 781 CrossRef
 Asplund, C, Berenstein, D, Trancanelli, D (2011) Evidence for fast thermalization in the planewave matrix model. Phys. Rev. Lett. 107: pp. 171602 CrossRef
 Barbon, JL, Magan, JM (2011) Chaotic fast scrambling at black holes. Phys. Rev. D 84: pp. 106012
 Schoutens, K, Verlinde, HL, Verlinde, EP (1993) Quantum black hole evaporation. Phys. Rev. D 48: pp. 2670
 Neumann, J (2010) Proof of the ergodic theorem and the Htheorem in quantum mechanics. Eur. Phys. J. H 35: pp. 201
 J. Gemmer, M. Michel and G. Mahler, Quantum thermodynamics — emergence of thermodynamic behavior within composite quantum systems, second edition, Lect. Notes Phys. 784, SpringerVerlag, Berlin Germany (2009).
 Linden, N, Popescu, S, Short, AJ, Winter, A (2009) Quantum mechanical evolution towards thermal equilibrium. Phys. Rev. E 79: pp. 061103
 Goldstein, S, Lebowitz, JL, Tumulka, R, Zanghì, N (2006) Canonical typicality. Phys. Rev. Lett. 96: pp. 050403 CrossRef
 Popescu, S, Short, AJ, Winter, A (2006) The foundations of statistical mechanics from entanglement: individual states vs. averages. Nature Phys 2: pp. 754 CrossRef
 Reimann, P (2008) Foundation of statistical mechanics under experimentally realistic conditions. Phys. Rev. Lett. 101: pp. 190403 CrossRef
 Bocchieri, P, Loinger, A (1959) Ergodic foundation of quantum statistical mechanics. Phys. Rev. 114: pp. 948 CrossRef
 S. Lloyd, Black holes, demons, and the loss of coherence, Ph.D. thesis, Rockefeller University, New York U.S.A. (1988).
 Tasaki, H (1998) From quantum dynamics to the canonical distribution: general picture and a rigorous example. Phys. Rev. Lett. 80: pp. 1373 CrossRef
 Calabrese, P, Cardy, JL (2006) Timedependence of correlation functions following a quantum quench. Phys. Rev. Lett. 96: pp. 136801 CrossRef
 Deutsch, JM (1991) Quantum statistical mechanics in a closed system. Phys. Rev. A 43: pp. 2046 CrossRef
 Srednicki, M (1994) Chaos and quantum thermalization. Phys. Rev. E 50: pp. 888
 Riera, A, Gogolin, C, Eisert, J (2012) Thermalization in nature and on a quantum computer. Phys. Rev. Lett. 108: pp. 080402 CrossRef
 Rigol, M, Srednicki, M (2012) Alternatives to eigenstate thermalization. Phys. Rev. Lett. 108: pp. 110601 CrossRef
 Nielsen, MA, Chuang, IL (2000) Quantum computation and quantum information. Cambridge University Press, Cambridge U.K
 Fannes, M (1973) A continuity property of the entropy density for spin lattice systems. Commun. Math. Phys. 31: pp. 291 CrossRef
 Karatzas, I, Shreve, SE (1991) Brownian motion and stochastic calculus. Springer, Germany
 Arnold, L (1974) Stochastic differential equations: theory and applications. Dover, New York U.S.A
 Raussendorf, R, Browne, DE, Briegel, HJ (2003) Measurementbased quantum computation on cluster states. Phys. Rev. A 68: pp. 022312 CrossRef
 Nest, M, Miyake, A, Dür, W, Briegel, HJ (2006) Universal resources for measurementbased quantum computation. Phys. Rev. Lett. 97: pp. 150504 CrossRef
 Hein, M, Eisert, J, Briegel, HJ (2004) Multiparty entanglement in graph states. Phys. Rev. A 69: pp. 062311 CrossRef
 Kolchin, VF (1999) Random graphs. Cambridge University Press, Cambridge U.K
 Hastings, M (2004) LiebSchultzMattis in higher dimensions. Phys. Rev. B 69: pp. 104431 CrossRef
 P. Hayden and A. Winter, The fidelity alternative and quantum identification, arXiv:1003.4994.
 Hayden, P, Horodecki, M, Yard, J, Winter, A (2008) A decoupling approach to the quantum capacity. Open Syst. Inf. Dyn. 15: pp. 7 CrossRef
 Nachtergaele, B, Raz, H, Schlein, B, Sims, R (2009) LiebRobinson bounds for harmonic and anharmonic lattice systems. Commun. Math. Phys. 286: pp. 1073 CrossRef
 Title
 Towards the fast scrambling conjecture
 Journal

Journal of High Energy Physics
2013:22
 Online Date
 April 2013
 DOI
 10.1007/JHEP04(2013)022
 Online ISSN
 10298479
 Publisher
 Springer Berlin Heidelberg
 Additional Links
 Topics
 Keywords

 Lattice Integrable Models
 M(atrix) Theories
 Black Holes
 Quantum Dissipative Systems
 Industry Sectors
 Authors

 Nima Lashkari ^{(1)}
 Douglas Stanford ^{(2)}
 Matthew Hastings ^{(3)} ^{(4)}
 Tobias Osborne ^{(5)}
 Patrick Hayden ^{(1)} ^{(6)} ^{(7)}
 Author Affiliations

 1. Department of Physics, McGill University, Rue University, Montreal, QC, Canada
 2. Stanford Institute for Theoretical Physics, Department of Physics, Stanford University, Via Pueblo Mall, Stanford, CA, U.S.A
 3. Department of Physics, Duke University, Durham, NC, U.S.A
 4. Microsoft Station Q, Elings Hall, Santa Barbara, CA, U.S.A
 5. Institut für Theoretische Physik, Appelstrasse, Hannover, Germany
 6. School of Computer Science, McGill University, Rue University, Montreal, QC, Canada
 7. Perimeter Institute for Theoretical Physics, Caroline Street, Waterloo, ON, Canada