Skip to main content
Log in

The heat kernel on AdS 3 and its applications

  • Published:
Journal of High Energy Physics Aims and scope Submit manuscript

Abstract

We derive the heat kernel for arbitrary tensor fields on S 3 and (Euclidean) AdS3 using a group theoretic approach. We use these results to also obtain the heat kernel on certain quotients of these spaces. In particular, we give a simple, explicit expression for the one loop determinant for a field of arbitrary spin s in thermal AdS3. We apply this to the calculation of the one loop partition function of \( \mathcal{N} = 1 \) supergravity on AdS3. We find that the answer factorizes into left- and right-moving super Virasoro characters built on the \( {\text{SL}}\left( {2,\mathbb{C}} \right) \) invariant vacuum, as argued by Maloney and Witten on general grounds.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. A. Maloney and E. Witten, Quantum gravity partition functions in three dimensions, JHEP 02 (2010) 029 [arXiv:0712.0155] [SPIRES].

    Article  Google Scholar 

  2. J.D. Brown and M. Henneaux, Central charges in the canonical realization of asymptotic symmetries: an example from three-dimensional gravity, Commun. Math. Phys. 104 (1986) 207 [SPIRES].

    Article  MATH  MathSciNet  ADS  Google Scholar 

  3. S. Giombi, A. Maloney and X. Yin, One-loop partition functions of 3D gravity, JHEP 08 (2008) 007 [arXiv:0804.1773] [SPIRES].

    Article  MathSciNet  ADS  Google Scholar 

  4. A. Higuchi, Symmetric tensor spherical harmonics on the N sphere and their application to the de Sitter group SO(N, 1), J. Math. Phys. 28 (1987) 1553 [Erratum ibid. 43 (2002) 6385] [SPIRES].

    Article  MATH  MathSciNet  ADS  Google Scholar 

  5. R. Camporesi, Harmonic analysis and propagators on homogeneous spaces, Phys. Rept. 196 (1990) 1 [SPIRES].

    Article  MathSciNet  ADS  Google Scholar 

  6. R. Camporesi, The spinor heat kernel in maximally symmetric spaces, Commun. Math. Phys. 148 (1992) 283 [SPIRES].

    Article  MATH  MathSciNet  ADS  Google Scholar 

  7. R. Camporesi and A. Higuchi, The Plancherel measure for p-forms in real hyperbolic spaces, J. Geom. Phys. 15 (1994) 57.

    Article  MATH  MathSciNet  ADS  Google Scholar 

  8. R. Camporesi and A. Higuchi, Spectral functions and zeta functions in hyperbolic spaces, J. Math. Phys. 35 (1994) 4217 [SPIRES].

    Article  MATH  MathSciNet  ADS  Google Scholar 

  9. R. Camporesi and A. Higuchi, On the eigenfunctions of the Dirac operator on spheres and real hyperbolic spaces, J. Geom. Phys. 20 (1996) 1 [gr-qc/9505009] [SPIRES].

    Article  MATH  MathSciNet  ADS  Google Scholar 

  10. J.S. Dowker and Y.P. Dowker, Interactions of massless particles of arbitrary spin, Proc. Roy. Soc. London A 294 (1966) 175.

    Article  ADS  Google Scholar 

  11. J.S. Dowker, Arbitrary spin theory in the Einstein universe, Phys. Rev. D 28 (1983) 3013 [SPIRES].

    Article  MathSciNet  ADS  Google Scholar 

  12. A. Chodos and E. Myers, Gravitational contribution to the Casimir energy in Kaluza-Klein theories, Ann. Phys. 156 (1984) 412 [SPIRES].

    Article  MathSciNet  ADS  Google Scholar 

  13. M.A. Rubin and C.R. Ordonez, Eigenvalues and degeneracies for n-dimensional tensor spherical harmonics, J. Math. Phys. 25 (1984) 2888 [SPIRES].

    Article  MATH  MathSciNet  ADS  Google Scholar 

  14. E. Elizalde, M. Lygren and D.V. Vassilevich, Antisymmetric tensor fields on spheres: functional determinants and non–local counterterms, J. Math. Phys. 37 (1996) 3105 [hep-th/9602113] [SPIRES].

    Article  MATH  MathSciNet  ADS  Google Scholar 

  15. S. Helgason, Differential geometry, Lie groups and symmetric spaces, Academic Press, New York, U.S.A. (1978).

    MATH  Google Scholar 

  16. I.S. Gradshteyn and I.M. Ryzhik, Table of integrals, series, and products, 6th ed., Academic Press, New York, U.S.A. (2000).

    MATH  Google Scholar 

  17. T. Dray, The relationship between monopole harmonics and spin weighted spherical harmonics, J. Math. Phys. 26 (1985) 1030 [SPIRES].

    Article  MATH  MathSciNet  ADS  Google Scholar 

  18. A.W. Knapp, Representation theory of semisimple groups — an overview based on examples, Princeton University Press, Princeton, U.S.A. (1986).

    MATH  Google Scholar 

  19. W. Rühl, Lorentz group and harmonic analysis, W.A. Benjamin, New York, U.S.A. (1970).

    MATH  Google Scholar 

  20. M. Carmeli, Group theory and general relativity, World Scientific, Singapore (1977).

    MATH  Google Scholar 

  21. A.A. Bytsenko, L. Vanzo and S. Zerbini, Ray-Singer torsion for a hyperbolic 3-manifold and asymptotics of Chern-Simons-Witten invariant, Nucl. Phys. B 505 (1997) 641 [hep-th/9704035] [SPIRES].

    Article  MathSciNet  ADS  Google Scholar 

  22. A.A. Bytsenko, G. Cognola, L. Vanzo and S. Zerbini, Quantum fields and extended objects in space-times with constant curvature spatial section, Phys. Rept. 266 (1996) 1 [hep-th/9505061] [SPIRES].

    Article  MathSciNet  Google Scholar 

  23. A.A. Bytsenko and M.E.X. Guimaraes, Partition functions of three-dimensional quantum gravity and the black hole entropy, J. Phys. Conf. Ser. 161 (2009) 012023 [arXiv:0807.2222] [SPIRES].

    Article  ADS  Google Scholar 

  24. A.A. Bytsenko and M.E.X. Guimaraes, Truncated heat kernel and one-loop determinants for the BTZ geometry, Eur. Phys. J. C 58 (2008) 511 [arXiv:0809.1416] [SPIRES].

    Article  MathSciNet  ADS  Google Scholar 

  25. G.W. Gibbons and M.J. Perry, Quantizing gravitational instantons, Nucl. Phys. B 146 (1978) 90 [SPIRES].

    Article  MathSciNet  ADS  Google Scholar 

  26. S.M. Christensen and M.J. Duff, Quantizing gravity with a cosmological constant, Nucl. Phys. B 170 (1980) 480 [SPIRES].

    Article  MathSciNet  ADS  Google Scholar 

  27. O. Yasuda, On the one loop effective potential in quantum gravity, Phys. Lett. B 137 (1984) 52 [SPIRES].

    ADS  Google Scholar 

  28. W. Rarita and J. Schwinger, On a theory of particles with half integral spin, Phys. Rev. 60 (1941) 61 [SPIRES].

    Article  MATH  ADS  Google Scholar 

  29. E.S. Fradkin and A.A. Tseytlin, On the new definition of off-shell effective action, Nucl. Phys. B 234 (1984) 509 [SPIRES].

    Article  ADS  Google Scholar 

  30. A. Maloney, W. Song and A. Strominger, Chiral gravity, log gravity and extremal CFT, Phys. Rev. D 81 (2010) 064007 [arXiv:0903.4573] [SPIRES].

    ADS  Google Scholar 

  31. J.M. Maldacena, H. Ooguri and J. Son, Strings in AdS 3 and the SL(2, R) WZW model. II: Euclidean black hole, J. Math. Phys. 42 (2001) 2961 [hep-th/0005183] [SPIRES].

    Article  MATH  MathSciNet  ADS  Google Scholar 

  32. A. Sen, Entropy function and AdS 2/CFT 1 correspondence, JHEP 11 (2008) 075 [arXiv:0805.0095] [SPIRES].

    Article  ADS  Google Scholar 

  33. A. Sen, Quantum entropy function from AdS 2/CFT 1 correspondence, Int. J. Mod. Phys. A 24 (2009) 4225 [arXiv:0809.3304] [SPIRES].

    ADS  Google Scholar 

  34. N. Banerjee, S. Banerjee, R.K. Gupta, I. Mandal and A. Sen, Supersymmetry, localization and quantum entropy function, JHEP 02 (2010) 091 [arXiv:0905.2686] [SPIRES].

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Justin R. David.

Additional information

ArXiv ePrint: 0911.5085

On leave from Harish-Chandra Research Institute, Allahabad. (Justin R. David)

Rights and permissions

Reprints and permissions

About this article

Cite this article

David, J.R., Gaberdiel, M.R. & Gopakumar, R. The heat kernel on AdS 3 and its applications. J. High Energ. Phys. 2010, 125 (2010). https://doi.org/10.1007/JHEP04(2010)125

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/JHEP04(2010)125

Keywords

Navigation