Skip to main content
Log in

Stability of complex Langevin dynamics in effective models

  • Published:
Journal of High Energy Physics Aims and scope Submit manuscript

Abstract

The sign problem at nonzero chemical potential prohibits the use of importance sampling in lattice simulations. Since complex Langevin dynamics does not rely on importance sampling, it provides a potential solution. Recently it was shown that complex Langevin dynamics fails in the disordered phase in the case of the three-dimensional XY model, while it appears to work in the entire phase diagram in the case of the three-dimensional SU(3) spin model. Here we analyse this difference and argue that it is due to the presence of the nontrivial Haar measure in the SU(3) case, which has a stabilizing effect on the complexified dynamics. The freedom to modify and stabilize the complex Langevin process is discussed in some detail.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. P. de Forcrand, Simulating QCD at finite density, PoS(LAT2009)010 [arXiv:1005.0539] [INSPIRE].

  2. G. Parisi, On complex probabilities, Phys. Lett. B 131 (1983) 393 [INSPIRE].

    MathSciNet  ADS  Google Scholar 

  3. J.R. Klauder, Stochastic quantization, in: H. Mitter, C.B. Lang eds., Recent Developments in High-Energy Physics, Springer-Verlag, Wien (1983), pg. 351.

    Google Scholar 

  4. J.R. Klauder, A Langevin approach to fermion and quantum spin correlation functions, J. Phys. A 16 (1983) L317 [INSPIRE].

    MathSciNet  ADS  Google Scholar 

  5. J.R. Klauder, Coherent state Langevin equations for canonical quantum systems with applications to the quantized hall effect, Phys. Rev. A 29 (1984) 2036 [INSPIRE].

    ADS  Google Scholar 

  6. J. Ambjørn and S. Yang, Numerical problems in applying the Langevin equation to complex effective actions, Phys. Lett. B 165 (1985) 140 [INSPIRE].

    ADS  Google Scholar 

  7. J. Ambjørn, M. Flensburg and C. Peterson, The complex Langevin equation and Monte Carlo simulations of actions with static charges, Nucl. Phys. B 275 (1986) 375 [INSPIRE].

    Article  ADS  Google Scholar 

  8. J. Berges, S. Borsányi, D. Sexty and I.-O. Stamatescu, Lattice simulations of real-time quantum fields, Phys. Rev. D 75 (2007) 045007 [hep-lat/0609058] [INSPIRE].

    ADS  Google Scholar 

  9. J. Berges and D. Sexty, Real-time gauge theory simulations from stochastic quantization with optimized updating, Nucl. Phys. B 799 (2008) 306 [arXiv:0708.0779] [INSPIRE].

    Article  ADS  Google Scholar 

  10. G. Aarts and F.A. James, On the convergence of complex Langevin dynamics: The Three-dimensional XY model at finite chemical potential, JHEP 08 (2010) 020 [arXiv:1005.3468] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  11. G. Aarts, Can stochastic quantization evade the sign problem? The relativistic Bose gas at finite chemical potential, Phys. Rev. Lett. 102 (2009) 131601 [arXiv:0810.2089] [INSPIRE].

    Article  ADS  Google Scholar 

  12. G. Aarts, Complex Langevin dynamics at finite chemical potential: mean field analysis in the relativistic Bose gas, JHEP 05 (2009) 052 [arXiv:0902.4686] [INSPIRE].

    Article  ADS  Google Scholar 

  13. G. Aarts and K. Splittorff, Degenerate distributions in complex Langevin dynamics: one-dimensional QCD at finite chemical potential, JHEP 08 (2010) 017 [arXiv:1006.0332] [INSPIRE].

    Article  ADS  Google Scholar 

  14. G. Aarts and F.A. James, Complex Langevin dynamics in the SU(3) spin model at nonzero chemical potential revisited, JHEP 01 (2012) 118 [arXiv:1112.4655] [INSPIRE].

    Article  ADS  Google Scholar 

  15. G. Aarts, E. Seiler and I.-O. Stamatescu, The Complex Langevin method: When can it be trusted?, Phys. Rev. D 81 (2010) 054508 [arXiv:0912.3360] [INSPIRE].

    ADS  Google Scholar 

  16. G. Aarts, F.A. James, E. Seiler and I.-O. Stamatescu, Complex Langevin: Etiology and Diagnostics of its Main Problem, Eur. Phys. J. C 71 (2011) 1756 [arXiv:1101.3270] [INSPIRE].

    Article  ADS  Google Scholar 

  17. D. Banerjee and S. Chandrasekharan, Finite size effects in the presence of a chemical potential: A study in the classical non-linear O(2) σ-model, Phys. Rev. D 81 (2010) 125007 [arXiv:1001.3648] [INSPIRE].

    ADS  Google Scholar 

  18. F. Karsch and H. Wyld, Complex Langevin simulation of the SU(3) spin model with nonzero chemical potential, Phys. Rev. Lett. 55 (1985) 2242 [INSPIRE].

    Article  ADS  Google Scholar 

  19. N. Bilic, H. Gausterer and S. Sanielevici, Complex Langevin solution to an effective theory of lattice QCD, Phys. Rev. D 37 (1988) 3684 [INSPIRE].

    ADS  Google Scholar 

  20. C. Gattringer, Flux representation of an effective Polyakov loop model for QCD thermodynamics, Nucl. Phys. B 850 (2011) 242 [arXiv:1104.2503] [INSPIRE].

    Article  ADS  Google Scholar 

  21. Y.D. Mercado and C. Gattringer, Monte Carlo simulation of the SU(3) spin model with chemical potential in a flux representation, Nucl. Phys. B 862 (2012) 737 [arXiv:1204.6074] [INSPIRE].

    Article  ADS  Google Scholar 

  22. M. Fromm, J. Langelage, S. Lottini and O. Philipsen, The QCD deconfinement transition for heavy quarks and all baryon chemical potentials, JHEP 01 (2012) 042 [arXiv:1111.4953] [INSPIRE].

    Article  ADS  Google Scholar 

  23. M. Fromm, J. Langelage, S. Lottini, M. Neuman and O. Philipsen, The silver blaze property for QCD with heavy quarks from the lattice, arXiv:1207.3005 [INSPIRE].

  24. G. Aarts and I.-O. Stamatescu, Stochastic quantization at finite chemical potential, JHEP 09 (2008) 018 [arXiv:0807.1597] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  25. G. Aarts, F.A. James, E. Seiler and I.-O. Stamatescu, Adaptive stepsize and instabilities in complex Langevin dynamics, Phys. Lett. B 687 (2010) 154 [arXiv:0912.0617] [INSPIRE].

    ADS  Google Scholar 

  26. E. Seiler, D. Sexty and I.-O. Stamatescu, Gauge cooling in complex Langevin for QCD with heavy quarks, arXiv:1211.3709 [INSPIRE].

  27. B. Soderberg, On the complex Langevin equation, Nucl. Phys. B 295 (1988) 396 [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  28. H. Okamoto, K. Okano, L. Schulke and S. Tanaka, The role of a kernel in complex Langevin systems, Nucl. Phys. B 324 (1989) 684 [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  29. K. Okano, L. Schulke and B. Zheng, Complex Langevin simulation, Prog. Theor. Phys. Suppl. 111 (1993) 313 [INSPIRE].

    Article  ADS  Google Scholar 

  30. J. Berges and I.-O. Stamatescu, Simulating nonequilibrium quantum fields with stochastic quantization techniques, Phys. Rev. Lett. 95 (2005) 202003 [hep-lat/0508030] [INSPIRE].

    Article  ADS  Google Scholar 

  31. A. Duncan and M. Niedermaier, On the temporal breakdown of the complex Langevin method, arXiv:1205.0307 [INSPIRE].

  32. D. Weingarten, Complex probabilities on R N as real probabilities on C N and an application to path integrals, Phys. Rev. Lett. 89 (2002) 240201 [quant-ph/0210195] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  33. A. Friedman, Stochastic Differential Equations and Applications, Dover publications Inc., New York, U.S.A. (1975).

    MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gert Aarts.

Additional information

ArXiv ePrint: 1212.5231

Rights and permissions

Reprints and permissions

About this article

Cite this article

Aarts, G., James, F.A., Pawlowski, J.M. et al. Stability of complex Langevin dynamics in effective models. J. High Energ. Phys. 2013, 73 (2013). https://doi.org/10.1007/JHEP03(2013)073

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/JHEP03(2013)073

Keywords

Navigation