Bases in coset conformal field theory from AGT correspondence and Macdonald polynomials at the roots of unity

  • A. A. Belavin
  • M. A. Bershtein
  • G. M. Tarnopolsky
Article

DOI: 10.1007/JHEP03(2013)019

Cite this article as:
Belavin, A.A., Bershtein, M.A. & Tarnopolsky, G.M. J. High Energ. Phys. (2013) 2013: 19. doi:10.1007/JHEP03(2013)019

Abstract

We continue our study of the AGT correspondence between instanton counting on \( {{{{{\mathbb{C}}^2}}} \left/ {{{{\mathbb{Z}}_p}}} \right.} \) and Conformal field theories with the symmetry algebra \( \mathcal{A}\left( {r,p} \right) \). In the cases r = 1, p = 2 and r = 2, p = 2 this algebra specialized to: \( \mathcal{A}\left( {1,2} \right)=\mathcal{H}\oplus \widehat{\mathfrak{sl}}{(2)_1} \) and \( \mathcal{A}\left( {2,2} \right)=\mathcal{H}\oplus \widehat{\mathfrak{sl}}{(2)_2}\oplus \mathrm{NSR} \).

As the main tool we use a new construction of the algebra A(r, 2) as the limit of the toroidal \( \mathfrak{g}\mathfrak{l}(1) \) algebra for q, t tend to −1. We claim that the basis of the representation of the algebra \( \mathcal{A}\left( {r,2} \right) \) (or equivalently, of the space of the local fields of the corresponding CFT) can be expressed through Macdonald polynomials with the parameters q, t go to −1. The vertex operator which naturally arises in this construction has factorized matrix elements in this basis. We also argue that the singular vectors of the \( \mathcal{N}=1 \) Super Virasoro algebra can be realized in terms of Macdonald polynomials for a rectangular Young diagram and parameters q, t tend to −1.

Keywords

Conformal and W Symmetry Quantum Groups Supersymmetric gauge theory 

Copyright information

© SISSA, Trieste, Italy 2013

Authors and Affiliations

  • A. A. Belavin
    • 1
    • 2
    • 3
  • M. A. Bershtein
    • 1
    • 2
    • 3
    • 4
  • G. M. Tarnopolsky
    • 1
    • 3
    • 5
  1. 1.Landau Institute for Theoretical Physics, RASChernogolovkaRussia
  2. 2.Institute for Information Transmission Problems, RASMoscowRussia
  3. 3.Moscow Institute of Physics and TechnologyDolgoprudnyRussia
  4. 4.Independent University of MoscowMoscowRussia
  5. 5.Department of PhysicsPrinceton UniversityPrincetonU.S.A.

Personalised recommendations