Skip to main content
Log in

Anomalous dimensions of gauge fields and gauge coupling beta-functions in the Standard Model at three loops

  • Published:
Journal of High Energy Physics Aims and scope Submit manuscript

Abstract

We present the results for three-loop gauge field anomalous dimensions in the SM calculated in the background field gauge within the unbroken phase of the model. The results are valid for the general background field gauge parameterized by three independent parameters. Both quantum and background fields are considered. The former are used to find three-loop anomalous dimensions for the gauge-fixing parameters, and the latter allow one to obtain the three-loop SM gauge beta-functions. Independence of beta-functions of gauge-fixing parameters serves as a validity check of our final results.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. ATLAS collaboration, Observation of a new particle in the search for the standard model Higgs boson with the ATLAS detector at the LHC, Phys. Lett. B 716 (2012) 1 [arXiv:1207.7214] [INSPIRE].

    ADS  Google Scholar 

  2. CMS collaboration, Observation of a new boson at a mass of 125 GeV with the CMS experiment at the LHC, Phys. Lett. B 716 (2012) 30 [arXiv:1207.7235] [INSPIRE].

    ADS  Google Scholar 

  3. N. Krasnikov, Restriction of the fermion mass in gauge theories of weak and electromagnetic interactions, Yad. Fiz. 28 (1978) 549 [INSPIRE].

    Google Scholar 

  4. P.Q. Hung, Vacuum instability and new constraints on fermion masses, Phys. Rev. Lett. 42 (1979) 873 [INSPIRE].

    Article  ADS  Google Scholar 

  5. H.D. Politzer and S. Wolfram, Bounds on particle masses in the Weinberg-Salam model, Phys. Lett. B 82 (1979) 242 [Erratum ibid. 83B (1979) 421] [INSPIRE].

    ADS  Google Scholar 

  6. F. Bezrukov, M.Y. Kalmykov, B.A. Kniehl and M. Shaposhnikov, Higgs boson mass and new physics, JHEP 10 (2012) 140 [arXiv:1205.2893] [INSPIRE].

    Article  ADS  Google Scholar 

  7. G. Degrassi et al., Higgs mass and vacuum stability in the standard model at NNLO, JHEP 08 (2012) 098 [arXiv:1205.6497] [INSPIRE].

    Article  ADS  Google Scholar 

  8. S. Alekhin, A. Djouadi and S. Moch, The top quark and Higgs boson masses and the stability of the electroweak vacuum, Phys. Lett. B 716 (2012) 214 [arXiv:1207.0980] [INSPIRE].

    ADS  Google Scholar 

  9. J.C. Collins, Renormalization. An introduction to renormalization, the renormalization group, and the operator product expansion, Cambridge University Press, Cambridge U.K. (1984) [INSPIRE].

    Book  MATH  Google Scholar 

  10. A. Vladimirov, Method for computing renormalization group functions in dimensional renormalization scheme, Theor. Math. Phys. 43 (1980) 417 [Teor. Mat. Fiz. 43 (1980) 210] [INSPIRE].

    Article  Google Scholar 

  11. D. Gross and F. Wilczek, Ultraviolet behavior of nonabelian gauge theories, Phys. Rev. Lett. 30 (1973) 1343 [INSPIRE].

    Article  ADS  Google Scholar 

  12. H.D. Politzer, Reliable perturbative results for strong interactions?, Phys. Rev. Lett. 30 (1973) 1346 [INSPIRE].

    Article  ADS  Google Scholar 

  13. D.R.T. Jones, Two loop diagrams in Yang-Mills theory, Nucl. Phys. B 75 (1974) 531 [INSPIRE].

    Article  ADS  Google Scholar 

  14. O. Tarasov and A. Vladimirov, Two loop renormalization of the Yang-Mills theory in an arbitrary gauge, Sov. J. Nucl. Phys. 25 (1977) 585 [Yad. Fiz. 25 (1977) 1104] [INSPIRE].

    Google Scholar 

  15. W.E. Caswell, Asymptotic behavior of nonabelian gauge theories to two loop order, Phys. Rev. Lett. 33 (1974) 244 [INSPIRE].

    Article  ADS  Google Scholar 

  16. E. Egorian and O. Tarasov, Two loop renormalization of the QCD in an arbitrary gauge, Theor. Math. Phys. 41 (1979) 863 [Teor. Mat. Fiz. 41 (1979) 26] [INSPIRE].

    Google Scholar 

  17. D. Jones, The two loop β-function for a G 1 × G 2 gauge theory, Phys. Rev. D 25 (1982) 581 [INSPIRE].

    ADS  Google Scholar 

  18. M.S. Fischler and C.T. Hill, Effects of large mass fermions on M X and sin2 θ w , Nucl. Phys. B 193 (1981) 53 [INSPIRE].

    Article  ADS  Google Scholar 

  19. M.E. Machacek and M.T. Vaughn, Two loop renormalization group equations in a general quantum field theory. 1. Wave function renormalization, Nucl. Phys. B 222 (1983) 83 [INSPIRE].

    Article  ADS  Google Scholar 

  20. I. Jack and H. Osborn, General background field calculations with fermion fields, Nucl. Phys. B 249 (1985) 472 [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  21. S. Gorishnii, A. Kataev and S. Larin, Two loop renormalization group calculations in theories with scalar quarks, Theor. Math. Phys. 70 (1987) 262 [Teor. Mat. Fiz. 70 (1987) 372] [INSPIRE].

    Article  Google Scholar 

  22. H. Arason et al., Renormalization group study of the standard model and its extensions. 1. The standard model, Phys. Rev. D 46 (1992) 3945 [INSPIRE].

    ADS  Google Scholar 

  23. T. Curtright, Three loop charge renormalization effects due to quartic scalar selfinteractions, Phys. Rev. D 21 (1980) 1543 [INSPIRE].

    MathSciNet  ADS  Google Scholar 

  24. D.R.T. Jones, Comment on the charge renormalization effects of quartic scalar selfinteractions, Phys. Rev. D 22 (1980) 3140 [INSPIRE].

    ADS  Google Scholar 

  25. O.V. Tarasov, A.A. Vladimirov and A.Y. Zharkov, The Gell-Mann-Low function of QCD in the three loop approximation, Phys. Lett. B 93 (1980) 429 [INSPIRE].

    ADS  Google Scholar 

  26. S.A. Larin and J.A.M. Vermaseren, The three loop QCD β-function and anomalous dimensions, Phys. Lett. B 303 (1993) 334 [hep-ph/9302208] [INSPIRE].

    ADS  Google Scholar 

  27. M. Steinhauser, Higgs decay into gluons up to \(O\left( {\alpha_s^3{G_F}m_t^2} \right)\), Phys. Rev. D 59 (1999) 054005 [hep-ph/9809507] [INSPIRE].

    ADS  Google Scholar 

  28. A.G.M. Pickering, J.A. Gracey and D.R.T. Jones, Three loop gauge β-function for the most general single gauge coupling theory, Phys. Lett. B 510 (2001) 347 [Phys. Lett. B 512 (2001) 230] [Erratum ibid. B 535 (2002) 377] [hep-ph/0104247] [INSPIRE].

    ADS  Google Scholar 

  29. V.N. Velizhanin, Three-loop renormalization of the N = 1, N = 2, N = 4 supersymmetric Yang-Mills theories, Nucl. Phys. B 818 (2009) 95 [arXiv:0809.2509] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  30. V.N. Velizhanin, Three loop anomalous dimension of the non-singlet transversity operator in QCD, Nucl. Phys. B 864 (2012) 113 [arXiv:1203.1022] [INSPIRE].

    Article  ADS  Google Scholar 

  31. A.A. Bagaev, A.V. Bednyakov, A.F. Pikelner and V.N. Velizhanin, The 16th moment of the three loop anomalous dimension of the non-singlet transversity operator in QCD, Phys. Lett. B 714 (2012) 76 [arXiv:1206.2890] [INSPIRE].

    ADS  Google Scholar 

  32. A.V. Bednyakov, Running mass of the b-quark in QCD and SUSY QCD, Int. J. Mod. Phys. A 22 (2007) 5245 [arXiv:0707.0650] [INSPIRE].

    ADS  Google Scholar 

  33. A.V. Bednyakov, On the two-loop decoupling corrections to tau-lepton and b-quark running masses in the MSSM, Int. J. Mod. Phys. A 25 (2010) 2437 [arXiv:0912.4652] [INSPIRE].

    ADS  Google Scholar 

  34. A.V. Bednyakov, Some two-loop threshold corrections and three-loop renormalization group analysis of the MSSM, arXiv:1009.5455 [INSPIRE].

  35. M.E. Machacek and M.T. Vaughn, Two loop renormalization group equations in a general quantum field theory. 2. Yukawa couplings, Nucl. Phys. B 236 (1984) 221 [INSPIRE].

    Article  ADS  Google Scholar 

  36. M.E. Machacek and M.T. Vaughn, Two loop renormalization group equations in a general quantum field theory. 3. Scalar quartic couplings, Nucl. Phys. B 249 (1985) 70 [INSPIRE].

    Article  ADS  Google Scholar 

  37. L.F. Abbott, The background field method beyond one loop, Nucl. Phys. B 185 (1981) 189 [INSPIRE].

    Article  ADS  Google Scholar 

  38. L.F. Abbott, Introduction to the background field method, Acta Phys. Polon. B 13 (1982) 33 [INSPIRE].

    MathSciNet  Google Scholar 

  39. L.N. Mihaila, J. Salomon and M. Steinhauser, Gauge coupling β-functions in the standard model to three loops, Phys. Rev. Lett. 108 (2012) 151602 [arXiv:1201.5868] [INSPIRE].

    Article  ADS  Google Scholar 

  40. L.N. Mihaila, J. Salomon and M. Steinhauser, Renormalization constants and β-functions for the gauge couplings of the Standard Model to three-loop order, arXiv:1208.3357 [INSPIRE].

  41. K.G. Chetyrkin and M.F. Zoller, Three-loop β-functions for top-Yukawa and the Higgs self-interaction in the Standard Model, JHEP 06 (2012) 033 [arXiv:1205.2892] [INSPIRE].

    Article  ADS  Google Scholar 

  42. T. Hahn, Generating Feynman diagrams and amplitudes with FeynArts 3, Comput. Phys. Commun. 140 (2001) 418 [hep-ph/0012260] [INSPIRE].

    Article  ADS  MATH  Google Scholar 

  43. S. Gorishnii, S. Larin, L. Surguladze and F. Tkachov, MINCER: program for multiloop calculations in quantum field theory for the schoonschip system, Comput. Phys. Commun. 55 (1989) 381 [INSPIRE].

    Article  ADS  Google Scholar 

  44. M. Tentyukov and J. Fleischer, A Feynman diagram analyzer DIANA, Comput. Phys. Commun. 132 (2000) 124 [hep-ph/9904258] [INSPIRE].

    Article  ADS  MATH  Google Scholar 

  45. S. Actis, A. Ferroglia, M. Passera and G. Passarino, Two-loop renormalization in the standard model. Part I: prolegomena, Nucl. Phys. B 777 (2007) 1 [hep-ph/0612122] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  46. S. Actis and G. Passarino, Two-loop renormalization in the standard model part II: renormalization procedures and computational techniques, Nucl. Phys. B 777 (2007) 35 [hep-ph/0612123] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  47. S. Actis and G. Passarino, Two-loop renormalization in the standard model part III: renormalization equations and their solutions, Nucl. Phys. B 777 (2007) 100 [hep-ph/0612124] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  48. N.D. Christensen and C. Duhr, FeynRulesFeynman rules made easy, Comput. Phys. Commun. 180 (2009) 1614 [arXiv:0806.4194] [INSPIRE].

    Article  ADS  Google Scholar 

  49. A. Semenov, LanHEPA package for automatic generation of Feynman rules from the Lagrangian. Updated version 3.1, arXiv:1005.1909 [INSPIRE].

  50. A. Denner, G. Weiglein and S. Dittmaier, Application of the background field method to the electroweak standard model, Nucl. Phys. B 440 (1995) 95 [hep-ph/9410338] [INSPIRE].

    Article  ADS  Google Scholar 

  51. O.V. Tarasov and A.A. Vladimirov, Three-loop calculations in non-Abelian gauge theories, JINR-E2-80-483 (1980).

  52. G. ’t Hooft and M. Veltman, Regularization and renormalization of gauge fields, Nucl. Phys. B 44 (1972) 189 [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  53. J. Vermaseren, New features of FORM, math-ph/0010025 [INSPIRE].

  54. T. van Ritbergen, A.N. Schellekens and J.A.N. Vermaseren, Group theory factors for Feynman diagrams, Int. J. Mod. Phys. A 14 (1999) 41 [hep-ph/9802376] [INSPIRE].

    ADS  Google Scholar 

  55. S.L. Adler, Axial vector vertex in spinor electrodynamics, Phys. Rev. 177 (1969) 2426 [INSPIRE].

    Article  ADS  Google Scholar 

  56. J. Bell and R. Jackiw, A PCAC puzzle: π 0 → γγ in the σ-model, Nuovo Cim. A 60 (1969) 47 [INSPIRE].

    Article  ADS  Google Scholar 

  57. W.A. Bardeen, Anomalous Ward identities in spinor field theories, Phys. Rev. 184 (1969) 1848 [INSPIRE].

    Article  ADS  Google Scholar 

  58. C. Bouchiat, J. Iliopoulos and P. Meyer, An anomaly free version of Weinbergs model, Phys. Lett. B 38 (1972) 519 [INSPIRE].

    ADS  Google Scholar 

  59. D.J. Gross and R. Jackiw, Effect of anomalies on quasirenormalizable theories, Phys. Rev. D 6 (1972) 477 [INSPIRE].

    ADS  Google Scholar 

  60. F. Jegerlehner, Facts of life with γ(5), Eur. Phys. J. C 18 (2001) 673 [hep-th/0005255] [INSPIRE].

    Article  ADS  Google Scholar 

  61. P. Ferreira, I. Jack and D. Jones, The three loop SSM β-functions, Phys. Lett. B 387 (1996) 80 [hep-ph/9605440] [INSPIRE].

    ADS  Google Scholar 

  62. I. Jack, D. Jones and A. Kord, Snowmass benchmark points and three-loop running, Annals Phys. 316 (2005) 213 [hep-ph/0408128] [INSPIRE].

    Article  ADS  MATH  Google Scholar 

  63. R.V. Harlander, L. Mihaila and M. Steinhauser, The SUSY-QCD β-function to three loops, Eur. Phys. J. C 63 (2009) 383 [arXiv:0905.4807] [INSPIRE].

    Article  ADS  Google Scholar 

  64. R. Harlander, L. Mihaila and M. Steinhauser, Running of α s and m(b) in the MSSM, Phys. Rev. D 76 (2007) 055002 [arXiv:0706.2953] [INSPIRE].

    ADS  Google Scholar 

  65. A. Bauer, L. Mihaila and J. Salomon, Matching coefficients for α s and m(b) to \(O\left( {\alpha_s^2} \right)\) in the MSSM, JHEP 02 (2009) 037 [arXiv:0810.5101] [INSPIRE].

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. V. Bednyakov.

Additional information

ArXiv ePrint: 1210.6873

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bednyakov, A.V., Pikelner, A.F. & Velizhanin, V.N. Anomalous dimensions of gauge fields and gauge coupling beta-functions in the Standard Model at three loops. J. High Energ. Phys. 2013, 17 (2013). https://doi.org/10.1007/JHEP01(2013)017

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/JHEP01(2013)017

Keywords

Navigation