Skip to main content
Log in

Multiscale estimation of processes related to the fractional Black-Scholes equation

  • Published:
Computational Statistics Aims and scope Submit manuscript

Summary

We consider a fractional-order differential equation involving fractal activity time to represent the stochastic behaviour of a log-price process of an underlying asset. The log-price process is defined in terms of fractional integration of the fractional derivative of Brownian motion on fractal time. A stable solution to the extrapolation and filtering problems associated is obtained in terms of covariance vaguelette functions (Angulo and Ruiz-Medina 1999). A simulation study is carried out to illustrate the methodology presented.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1:
Figure 2:
Figure 3:
Figure 4:

Similar content being viewed by others

References

  • Adler, R.J. (1981), The Geometry of Random Fields, John Wiley, New York.

    MATH  Google Scholar 

  • Angulo, J.M. and Ruiz-Medina, M.D. (1999), Multiresolution approximation to the stochastic inverse problem. Advances in Applied Probability, 31, 1039–1057.

    Article  MathSciNet  Google Scholar 

  • Anh V.V., Angulo, J.M. and Ruiz-Medina, M.D. (1999), Possible long-range dependence in fractional random fields. Journal of Statistical Planning and Inference, 80, 95–110.

    Article  MathSciNet  Google Scholar 

  • Benassi, A., Jaffard, S. and Roux, D. (1997), Elliptic Gaussian random processes. Revista Maternática Iberoamericana, 13, 19–90.

    Article  MathSciNet  Google Scholar 

  • Calvet, L. and Fisher, A. (2001), Forecasting multifractal volatility. Journal of Econometrics, 105, 27–58.

    Article  MathSciNet  Google Scholar 

  • Daubechies, I. (1992), Ten Lectures on Wavelets, SIAM, Philadelphia.

    Book  Google Scholar 

  • Donoho, D.L. (1995), Nonlinear solution of linear inverse problems by wavelet-vaguelette decomposition. Applied and Computational Harmonic Analysis, 2, 101–126.

    Article  MathSciNet  Google Scholar 

  • Fisher, A., Calvet, L. and Mandelbrot, B. (1997), Multifractality of the Deutschmark/US Dollar exchange rates. Cowles Foundation Discussion Paper, 1165.

  • Hartvig, N.V., Jensen, J.L. and Pedersen, J. (2001), A class of risk neutral densities with heavy tails. Finance and Stochastics, 5, 115–128.

    Article  MathSciNet  Google Scholar 

  • Heyde, C.C. (1999), A risky asset model with strong dependence through fractal activity time. Journal of Applied Probability, 36, 1234–1239.

    Article  MathSciNet  Google Scholar 

  • Kato, T. (1995), Perturbation Theory of Linear Operators, Springer-Verlag, Berlin.

    Book  Google Scholar 

  • Mandelbrot, B., Fisher, A. and Calvet, L. (1997), A multifractal model of asset returns. Cowles Foundation Discussion Paper, 1164.

  • Meyer, Y. (1992), Wavelets and Operators, Cambridge University Press, Cambridge.

    MATH  Google Scholar 

  • Podlubny, I. (1999), Fractional Differential Equations, Academic Press, Inc., San Diego.

    MATH  Google Scholar 

  • Rozanov, Y.A. (1996), Random Fields and Stochastic Partial Differential Equations, Kluwer Academic Publishers, Dordrecht.

    Google Scholar 

  • Ruiz-Medina, M.D., Angulo, J.M. and Anh, V.V. (2002), Stochastic fractional-order differential models on fractals. Theory of Probability and Mathematical Statistics, 67, 130–146.

    MathSciNet  MATH  Google Scholar 

  • Ruiz-Medina, M.D., Anh, V.V. and Angulo, J.M. (2001), Stochastic fractional-order differential models with fractal boundary conditions. Statistics and Probability Letters, 54, 47–60.

    Article  MathSciNet  Google Scholar 

  • Samorodnitsky, G. and Taqqu, M.S. (1994), Stable Non-Gaussian Random Processes. Stochastic Models with Infinite Variance, Chapman & Hall, New York.

    MATH  Google Scholar 

  • Triebel, H. (1997), Fractals and Spectra, Birkhäuser, Basel.

    Book  Google Scholar 

  • Wong, E. and Hajek, B. (1985), Stochastic Processes in Engineering Systems, Springer-Verlag, New York.

    Book  Google Scholar 

  • Zariphopoulou, T. (1997), A solution to valuation with unhedgeable risks. Finance and Stochastics, 5, 61–82.

    Article  MathSciNet  Google Scholar 

Download references

Acknowledgments

This work has been supported in part by projects BFM2000-1465 and BFM2002-01836 of the DGI, Spain.

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Fernández-Pascual, R., Ruiz-Medina, M.D. & Angulo, J.M. Multiscale estimation of processes related to the fractional Black-Scholes equation. Computational Statistics 18, 401–415 (2003). https://doi.org/10.1007/BF03354606

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF03354606

Keywords

Navigation