Skip to main content
Log in

Retinoic acid receptor β2 re-expression and growth inhibition in thyroid carcinoma cell lines after 5-aza-2′-deoxycytidine treatment

  • Original Articles
  • Published:
Journal of Endocrinological Investigation Aims and scope Submit manuscript

Abstract

The treatment of both undifferentiated and de-differentiated thyroid tumors, which are unresponsive to radioiodine, represents one of the biggest challenges for thyroidologists. The aim of the present study was to investigate in vitro the methylation status of retinoic acid receptors (RAR)β2 promoter and the effect of the demethylating agent 5-aza-2′-deoxycytidine (5-Aza-CdR) on 5 human thyroid cancer cell lines. The methylation status of RARβ2 promoter was analyzed by methylation-specific PCR. The effect of 5-Aza-CdR on cell growth and apoptosis was evaluated by cell counting, enzyme-linked immunosorbent assay tests and fluorescence-activated cell sorting analysis, while the effect on the expression of RAR and thyroid-specific genes was measured by qualitative and quantitative RT-PCR. Methylation of RARβ2 promoter was present only in ARO cells. 5-Aza-CdR determined growth inhibition in all cell lines, probably due to apoptosis in WRO, NPA, and ARO cells, and to inhibition of DNA synthesis in TT cells. Treatment with 5-Aza-CdR induced the expression of RARβ mRNA in ARO and FRO cells, a slight increase of the expression of Tg, TPO and thyroid trancription factor 1 (TTF-1) mRNA and the new expression of low levels of NIS in TT cells. A significant increase of TTF-1 mRNA in FRO cells was also observed. In this study we demonstrated that RARβ2 promoter was methylated in ARO cell line. However, the 5-Aza-CdR treatment induced RARβ mRNA expression not only in ARO but also in FRO and TT cell lines, whose RARβ2 promoter was unmethylated. A significant reduction of cell growth, but not cell re-differentiation, was also observed after 5-Aza-CdR treatment.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Hayat MJ, Howlader N, Reichman ME, Edwards BK. Cancer statistics, trends, and multiple primary cancer analyses from the Surveillance, Epidemiology, and End Results (SEER) Program. Oncologist 2007, 12: 20–37.

    Article  PubMed  Google Scholar 

  2. Hundahl SA, Cady B, Cunningham MP, et al. Initial results from a prospective cohort study of 5583 cases of thyroid carcinoma treated in the United States during 1996. U.S. and German Thyroid Cancer Study Group. An American College of Surgeons Commission on Cancer Patient Care Evaluation study. Cancer 2000, 89: 202–17.

    Article  CAS  PubMed  Google Scholar 

  3. Schlumberger MJ. Papillary and follicular thyroid carcinomas. N Engl J Med 1998, 338: 297–306.

    Article  CAS  PubMed  Google Scholar 

  4. Wolf G. A history of vitamin A and retinoids. FASEB J 1996, 10: 1102–7.

    CAS  PubMed  Google Scholar 

  5. Giguère V. Retinoic acid receptors and cellular retinoid binding proteins: complex interplay in retinoid signaling. Endocr Rev 1994, 15: 61–79.

    PubMed  Google Scholar 

  6. Elisei R, Vivaldi A, Agate L, et al. All-trans-retinoic acid treatment inhibits the growth of retinoic acid receptor β messenger ribonucleic acid expressing thyroid cancer cell lines cut does not reinduce the expression of thyroid-specific genes. J Clin Endocrinol Metab 2005, 90: 2403–11.

    Article  CAS  PubMed  Google Scholar 

  7. Haugen BR, Larson LL, Pugazhenthi U, et al. Retinoic acid and retinoid X receptors are differentially expressed in thyroid cancer and thyroid carcinoma cell lines and predict response to treatment with retinoids. J Clin Endocrinol Metab 2004, 89: 272–80.

    Article  CAS  PubMed  Google Scholar 

  8. Sirchia SM, Ferguson AT, Sironi E, et al. Evidence of epigenetic changes affecting the chromatin state of the retinoic acid recptor β2 promoter in breast cancer cells. Oncogene 2000, 19: 1556–63.

    Article  CAS  PubMed  Google Scholar 

  9. Sirchia SM, Ren M, Pili R, et al. Endogenous reactivation of the RARβ2 tumor suppressor gene epigenetically silenced in breast cancer. Cancer Res 2002, 62: 2455–61.

    CAS  PubMed  Google Scholar 

  10. Widschwendter M, Berger J, Hermann M, et al. Methylation and silencing of the retinoic acid receptor-β2 gene in breast cancer. J Natl Cancer Inst 2000, 92: 826–32.

    Article  CAS  PubMed  Google Scholar 

  11. Petty WJ, Li N, Biddle A, et al. A novel retinoic acid receptor β isoform and retinoid resistance in lung carcinogenesis. J Natl Cancer Inst 2005, 97: 1645–51.

    Article  CAS  PubMed  Google Scholar 

  12. Li R, Saito T, Tanaka R, et al. Hypermethylation in promoter region of retinoic acid receptor-beta gene and immunohistochemical findings on retinoic acid receptors in carcinogenesis of endometrium. Cancer Lett 2004, 219: 33–40.

    Article  CAS  Google Scholar 

  13. Liu Z, Zhang L, Ding F, et al. 5-Aza-2′-deoxycytidine induces retinoic acid receptor-β2 demethylation and growth inhibition in esophageal squamous carcinoma cells. Cancer Lett 2005, 230: 271–83.

    Article  CAS  PubMed  Google Scholar 

  14. Jones PA, Baylin SB. The fundamental role of epigenetic events in cancer. Nat Rev Genet 2002, 3: 415–28.

    Article  CAS  PubMed  Google Scholar 

  15. Das PM, Singal R. DNA methylation and cancer. J Clin Oncol 2004, 22: 4632–42.

    Article  CAS  PubMed  Google Scholar 

  16. Momparler RL. Epigenetic therapy of cancer with 5-Aza-2′-deoxycytidine (decitabine). Semin Oncol 2005, 32: 443–51.

    Article  CAS  PubMed  Google Scholar 

  17. Herman JG, Graff JR, Myöhänen S, Nelkin BD, Baylin SB. Methylation-specific PCR: a novel PCR assay for methylation status of CpG islands. Proc Natl Acad Sci U S A 1996, 93: 9821–6.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  18. Elisei R, Vivaldi A, Ciampi R, et al. Treatment with drugs able to reduce iodine efflux significantly increases the intracellular retention time in thyroid cancer cells stably transfected with sodium iodide symporter complementary deoxyribonucleic acid. J Clin Endocrinol Metab 2006, 91: 2389–95.

    Article  CAS  PubMed  Google Scholar 

  19. Fornoni A, Li H, Foschi A, Striker GE, Striker LJ. Hepatocyte growth factor, but not insulin-like growth factor I, protects podocytes against cyclosporin A-induced apoptosis. Am J Pathol 2001, 158: 275–80.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  20. Yasuhara S, Zhu Y, Matsui T, et al. Comparison of comet assay, electron microscopy, and flow cytometry for detection of apoptosis. J Histochem Cytochem 2003, 51: 873–85.

    Article  CAS  PubMed  Google Scholar 

  21. Herman JG, Baylin SB. Gene silencing in cancer in association with promoter hypermethylation. N Engl J Med 2003, 349: 2042–54.

    Article  CAS  PubMed  Google Scholar 

  22. Ren M, Pozzi S, Bistulfi G, Somenzi G, Rossetti S,Sacchi N. Impaired retinoic acid (RA) signal leads to RARbeta2 epigenetic silencing and RA resistance. Mol Cell Biol 2005, 25: 10591–603.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  23. Xing M. Gene methylation in thyroid tumorigenesis. Endocrinology 2007, 148: 948–53.

    Article  CAS  PubMed  Google Scholar 

  24. Venkataraman GM, Yatin M, Marcinek R, Ain KB. Restoration of iodine uptake in dedifferentiated thyroid carcinoma: relationship to human Na+/I symporter gene methylation status. J Clin Endocrinol Metab 1999, 84: 2449–57.

    CAS  PubMed  Google Scholar 

  25. Xing M, Usadel H, Cohen Y, et al. Methylation of the thyroid-stimulating hormone receptor gene in epithelial thyroid tumors: a marker of malignancy and a cause of gene silencing. Cancer Res 2003, 63: 2316–21.

    CAS  PubMed  Google Scholar 

  26. Katoh R, Miyagi E, Nakamura N, et al. Expression of thyroid trasncription factor-1 (TTF-1) in human C cells and medullary thyroid carcinomas. Human Pathol 2000, 31: 386–93.

    Article  CAS  Google Scholar 

  27. Cengic N, Baker CH, Schütz M, Goke B, Morris JC, Spitzweg C. A novel therapeutic strategy for medullary thyroid cancer based on ra dioiodine therapy following tissue-specific sodium iodide symporter gene expression. J Clin Endocrinol Metab 2005, 90: 4457–64.

    Article  CAS  PubMed  Google Scholar 

  28. Kuphal S, Bosserhoff AK. Influence of the cytoplasmic domain of E-cadherin on endogenous N-cadherin expression in malignant melanoma. Oncogene 2006, 25: 248–59.

    Article  CAS  PubMed  Google Scholar 

  29. Bovée JV, van den Broek LJ, Cleton-Jansen AM, Hogendoorn PC. Up-regulation of PTHrP and Bcl-2 expression characterizes the progression of osteochondroma towards peripheral chondrosarcoma and is a late event in central chondrosarcoma. Lab Invest 2000, 80: 1925–34.

    Article  PubMed  Google Scholar 

  30. Jiang C, Tan Y, Li E. Histopathological and immunohistochemical studies on medullary thyroid carcinoma. Zhonghua Bing Li Xue Za Zhi 1996, 25: 332–5.

    CAS  PubMed  Google Scholar 

  31. Kovacs CS, Mase RM, Kovacs K, Nguyen GK, Chik CL. Thyroid medullary carcinoma with thyroglobulin immunoreactivity in sporadic multiple endocrine neoplasia type 2-B. Cancer 1994, 74: 928–32.

    Article  CAS  PubMed  Google Scholar 

  32. Ljungberg O, Ericsson UB, Bondeson L, Thorell%J. A compound follicular-parafollicular cell carcinoma of the thyroid: a new tumor entity? Cancer 1983, 52: 1053–61.

    Article  CAS  PubMed  Google Scholar 

  33. Elisei R, Pinchera A, Romei C, et al. Expression of thyrotropin receptor (TSH-R), thyroglobulin, thyroperoxidase and calcitonin messenger ribonucleic acid in thyroid carcinoma: evidence of TSH-R gene transcript in medullary histotype. J Clin Endocrinol Metab 1994, 78: 867–71.

    CAS  PubMed  Google Scholar 

  34. Baylin SB. DNA methylation and gene silencing in cancer. Nat Clin Pract Oncol 2005, 2: S4–11.

    Article  CAS  PubMed  Google Scholar 

  35. Rosenfeld CS. Clinical development of decitabine as prototype for an epigenetic drug program. Semin Oncol 2005, 32: 465–72.

    Article  CAS  PubMed  Google Scholar 

  36. Gomyo Y, Sasaki J, Branch C, Roth JA, Mukhopadhyay%T. 5-aza- 2′-deoxycytidine upregulates caspase-9 expression cooperating with p53-induced apoptosis in human lung cancer cells. Oncogene 2004, 23: 6779–87.

    Article  CAS  PubMed  Google Scholar 

  37. Fulda S, Küfer MU, Meyer E, van Valen F, Dockhorn-Dworniczak B, Debatin KM. Sensitization for death receptor- or drug-induced apoptosis by re-expression of caspase-8 through demethylation or gene transfer. Oncogene 2001, 20: 5865–77.

    Article  CAS  PubMed  Google Scholar 

  38. Hsi LC, Xi X, Wu Y, Lippman SM. The methyltransferase inhibitor 5-aza-2-deoxycytidine induces apoptosis via induction of 15-lipoxygenase-1 in colorectal cancer cells. Mol Cancer Ther 2005, 4: 1740–6.

    Article  CAS  PubMed  Google Scholar 

  39. Doré BT, Chomienne C, Momparler RL. Effect of 5-aza-2′-deoxycytidine and vitamin D3 analogs on growth and differentiation of human myeloid leukemic cells. Cancer Chemother Pharmacol 1998, 41: 275–80.

    Article  PubMed  Google Scholar 

  40. Bartolucci S, Estenoz M, de Franciscis V, et al. Effect of cytidine analogs on cell growth and differentiation on a human neuroblastoma line. Cell Biophys 1989, 15: 67–77.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to R. Elisei MD.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Miasaki, F.Y., Vivaldi, A., Ciampi, R. et al. Retinoic acid receptor β2 re-expression and growth inhibition in thyroid carcinoma cell lines after 5-aza-2′-deoxycytidine treatment. J Endocrinol Invest 31, 724–730 (2008). https://doi.org/10.1007/BF03346422

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF03346422

Keywords

Navigation