Skip to main content
Log in

Endonuclease Activation and Chromosomal DNA Fragmentation during Apoptosis in Leukemia Cells

  • Published:
International Journal of Hematology Aims and scope Submit manuscript

Abstract

Apoptotic endonuclease is a key enzyme that mediates regulated DNA fragmentation and chromatin condensation in response to apoptotic signals such as the Fas ligand, ionizing radiation, and anticancer agents. An endonuclease that is activated specifically by caspase-3 has been identified in humans and mice. The human gene for this protein has been termed DFF40 (DNA fragmentation factor, 40-kd subunit) or caspase-activated nuclease (CPAN), whereas the mouse homologue has been named caspase-activated deoxyribonuclease (CAD). Although CAD/DFF40 is known as a major apoptotic nuclease, mice lacking inhibitor of CAD (ICAD) (also known as DFF45) are viable and still show DNA fragmentation, suggesting that alternative endonucleases play an important role during apoptosis. Endonuclease G has been reported to possibly be responsible for DNA fragmentation in various cells during apoptosis. Furthermore, we also have found that apurinic/apyrimidinic endonuclease 1 (Ape1) and its N-terminal-truncated form (AN34) are involved in DNA fragmentation during apoptosis in leukemia cells. In this review, we describe the features of several endonucleases that are involved in the apoptosis of human leukemia cells. Apoptotic endonuclease may vary among different leukemia cell types.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Steller H. Mechanisms and genes of cellular suicide. Science. 1995; 267:1445–1449.

    Article  CAS  PubMed  Google Scholar 

  2. Jacobson MD, Weil M, Raff MC. Programmed cell death in animal development. Cell. 1997;88:347–354.

    Article  CAS  PubMed  Google Scholar 

  3. Wyllie AH, Kerr JF, Currie AR. Cell death: the significance of apoptosis. Int Rev Cytol. 1980;68:251–306.

    Article  CAS  PubMed  Google Scholar 

  4. Walker PR, Sikorska M. New aspects of the mechanism of DNA fragmentation in apoptosis. Biochem Cell Biol. 1997;75:287–299.

    Article  CAS  PubMed  Google Scholar 

  5. Peitsch MC, Polzar B, Stephan H, et al. Characterization of the endogenous deoxyribonuclease involved in nuclear DNA degradation during apoptosis. (programmed cell death). EMBO J. 1993;12:371–377.

    CAS  PubMed Central  PubMed  Google Scholar 

  6. Rauch F, Polzar B, Stephan H, Zanotti S, Paddenberg R, Mannherz HG. Androgen ablation leads to an upregulation and intranuclear accumulation of deoxyribonuclease I in rat prostate epithelial cells paralleling their apoptotic elimination. J Cell Biol. 1997;137:909–923.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  7. Gaido ML, Cidlowski JA. Identification, purification, and characterization of a calcium-dependent endonuclease (NUC18) from apoptotic rat thymocytes: NUC18 is not histone H2B. J Biol Chem. 1991;266:18580–18585.

    CAS  PubMed  Google Scholar 

  8. Krieser RJ, Eastman A. The cloning and expression of human deoxyribonuclease II: a possible role in apoptosis. J Biol Chem. 1998;273:30909–30914.

    Article  CAS  PubMed  Google Scholar 

  9. Barry MA, Eastman A. Identification of deoxyribonuclease II as an endonuclease involved in apoptosis. Arch Biochem Biophys. 1993;300:440–450.

    Article  CAS  PubMed  Google Scholar 

  10. Ribeiro JM, Carson DA. Ca2+/Mg2+-dependent endonuclease from human spleen: purification, properties, and role in apoptosis. Biochemistry. 1993;32:9129–9136.

    Article  CAS  PubMed  Google Scholar 

  11. Shiokawa D, Ohyama H, Yamada T, Tanuma S. Purification and properties of DNase gamma from apoptotic rat thymocytes. Biochem J. 1997;326(pt 3):675–681.

    CAS  PubMed Central  PubMed  Google Scholar 

  12. Khodarev NN, Ashwell JD. An inducible lymphocyte nuclear Ca2+/Mg2+-dependent endonuclease associated with apoptosis. J Immunol. 1996;156:922–931.

    CAS  PubMed  Google Scholar 

  13. Pandey S, Walker PR, Sikorska M. Identification of a novel 97 kDa endonuclease capable of internucleosomal DNA cleavage. Biochemistry. 1997;36:711–720.

    Article  CAS  PubMed  Google Scholar 

  14. Bernardi G. Mechanism of action and structure of acid deoxyribonuclease. Adv Enzymol Relat Areas Mol Biol. 1968;31:1–49.

    CAS  PubMed  Google Scholar 

  15. Montague JW, Gaido ML, Frye C, Cidlowski JA. A calciumdependent nuclease from apoptotic rat thymocytes is homologous with cyclophilin: recombinant cyclophilins A, B, and C have nuclease activity. J Biol Chem. 1994;269:18877–18880.

    CAS  PubMed  Google Scholar 

  16. Enari M, Sakahira H, Yokoyama H, Okawa K, Iwamatsu A, Nagata S. A caspase-activated DNase that degrades DNA during apoptosis, and its inhibitor ICAD. Nature. 1998;391:43–50.

    Article  CAS  PubMed  Google Scholar 

  17. Li LY, Luo X, Wang X. Endonuclease G is an apoptotic DNase when released from mitochondria. Nature. 2001;412:95–99.

    Article  CAS  PubMed  Google Scholar 

  18. Yoshida A, Pourquier P, Pommier Y. Purification and characterization of a Mg2+-dependent endonuclease (AN34) from etoposidetreated human leukemia HL-60 cells undergoing apoptosis. Cancer Res. 1998;58:2576–2582.

    CAS  PubMed  Google Scholar 

  19. Yoshida A, Urasaki Y, Waltham M, et al. Human apurinic/apyrimidinic endonuclease (Ape1) and its N-terminal truncated form (AN34) are involved in DNA fragmentation during apoptosis. J Biol Chem. 2003;278:37768–37776.

    Article  CAS  PubMed  Google Scholar 

  20. Walker PR, Smith C, Youdale T, Leblanc J, Whitfield JF, Sikorska M. Topoisomerase II-reactive chemotherapeutic drugs induce apoptosis in thymocytes. Cancer Res. 1991;51:1078–1085.

    CAS  PubMed  Google Scholar 

  21. Falcieri E, Martelli AM, Bareggi R, Cataldi A, Cocco L. The protein kinase inhibitor staurosporine induces morphological changes typical of apoptosis in MOLTA cells without concomitant DNA fragmentation. Biochem Biophys Res Commun. 1993;193:19–25.

    Article  CAS  PubMed  Google Scholar 

  22. Oberhammer F, Wilson JW, Dive C, et al. Apoptotic death in epithelial cells: cleavage of DNA to 300 and/or 50 kb fragments prior to or in the absence of internucleosomal fragmentation. EMBO J. 1993;12:3679–3684.

    CAS  PubMed Central  PubMed  Google Scholar 

  23. Pandey S, Walker PR, Sikorska M. Separate pools of endonuclease activity are responsible for internucleosomal and high molecular mass DNA fragmentation during apoptosis. Biochem Cell Biol. 1994;72:625–629.

    Article  CAS  PubMed  Google Scholar 

  24. Cohen GM, Sun XM, Snowden RT, Dinsdale D, Skilleter DN. Key morphological features of apoptosis may occur in the absence of internucleosomal DNA fragmentation. Biochem J. 1992;286(pt 2):331–334.

    CAS  PubMed Central  PubMed  Google Scholar 

  25. Cohen GM, Sun XM, Fearnhead H, et al. Formation of large molecular weight fragments of DNA is a key committed step of apoptosis in thymocytes. J Immunol. 1994;153:507–516.

    CAS  PubMed  Google Scholar 

  26. Yoshida A, Ueda T, Wano Y, Nakamura T. DNA damage and cell killing by camptothecin and its derivative in human leukemia HL-60 cells. Jpn J Cancer Res. 1993;84:566–573.

    Article  CAS  PubMed  Google Scholar 

  27. Yoshida A, Ueda T, Takauji R, et al. Role of calcium ion in induction of apoptosis by etoposide in human leukemia HL-60 cells. Biochem Biophys Res Commun. 1993;196:927–934.

    Article  CAS  PubMed  Google Scholar 

  28. Yoshida A, Takauji R, Inuzuka M, Ueda T, Nakamura T. Role of serine and ICE-like proteases in induction of apoptosis by etoposide in human leukemia HL-60 cells. Leukemia. 1996;10:821–824.

    CAS  PubMed  Google Scholar 

  29. Bertrand R, Solary E, O'Connor P, Kohn KW, Pommier Y. Induction of a common pathway of apoptosis by staurosporine. Exp Cell Res. 1994;211:314–321.

    Article  CAS  PubMed  Google Scholar 

  30. Qi SN, Yoshida A, Ueda T. Activation of caspases-3/7 is dispensable for idarubicin-induced apoptotic DNA fragmentation in human leukemia cells. Int J Oncol. 2003;22:1123–1128.

    CAS  PubMed  Google Scholar 

  31. Solary E, Bertrand R, Pommier Y. Apoptosis induced by DNA topoisomerase I and II inhibitors in human leukemic HL-60 cells. Leuk Lymphoma. 1994;15:21–32.

    Article  CAS  PubMed  Google Scholar 

  32. Gavrieli Y, Sherman Y, Ben-Sasson SA. Identification of programmed cell death in situ via specific labeling of nuclear DNA fragmentation. J Cell Biol. 1992;119:493–501.

    Article  CAS  PubMed  Google Scholar 

  33. Peitsch MC, Muller C, Tschopp J. DNA fragmentation during apoptosis is caused by frequent single-strand cuts. Nucleic Acids Res. 1993;21:4206–4209.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  34. Walker PR, Leblanc J, Sikorska M. Evidence that DNA fragmentation in apoptosis is initiated and propagated by single-strand breaks. Cell Death Differ. 1997;4:506–515.

    Article  CAS  PubMed  Google Scholar 

  35. Liu X, Zou H, Slaughter C, Wang X. DFF, a heterodimeric protein that functions downstream of caspase-3 to trigger DNA fragmentation during apoptosis. Cell. 1997;89:175–184.

    Article  CAS  PubMed  Google Scholar 

  36. Halenbeck R, MacDonald H, Roulston A, Chen IT, Conroy L, Williams LT. CPAN, a human nuclease regulated by the caspasesensitive inhibitor DFF45. Curr Biol. 1998;8:537–540.

    Article  CAS  PubMed  Google Scholar 

  37. Liu X, Li P, Widlak P, et al. The 40-kDa subunit of DNA fragmentation factor induces DNA fragmentation and chromatin condensation during apoptosis. Proc Natl Acad Sci U S A. 1998;95:8461–8466.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  38. Sakahira H, Enari M, Nagata S. Cleavage of CAD inhibitor in CAD activation and DNA degradation during apoptosis. Nature. 1998;391:96–99.

    Article  CAS  PubMed  Google Scholar 

  39. Mukae N, Enari M, Sakahira H, et al. Molecular cloning and characterization of human caspase-activated DNase. Proc Natl Acad Sci U S A. 1998;95:9123–9128.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  40. Kawane K, Fukuyama H, Adachi M, et al. Structure and promoter analysis of murine CAD and ICAD genes. Cell Death Differ. 1999;6:745–752.

    Article  CAS  PubMed  Google Scholar 

  41. Gu J, Dong RP, Zhang C, McLaughlin DF, Wu MX, Schlossman SF. Functional interaction of DFF35 and DFF45 with caspase-activated DNA fragmentation nuclease DFF40. J Biol Chem. 1999;274:20759–20762.

    Article  CAS  PubMed  Google Scholar 

  42. Zhang J, Liu X, Scherer DC, van Kaer L, Wang X, Xu M. Resistance to DNA fragmentation and chromatin condensation in mice lacking the DNA fragmentation factor 45. Proc Natl Acad Sci U S A. 1998;95:12480–12485.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  43. Yuste VJ, Bayascas JR, Llecha N, Sanchez-Lopez I, Boix J, Comella JX. The absence of oligonucleosomal DNA fragmentation during apoptosis of IMR-5 neuroblastoma cells: disappearance of the caspaseactivated DNase. J Biol Chem. 2001;276:22323–22331.

    Article  CAS  PubMed  Google Scholar 

  44. Kaufmann SH. Induction of endonucleolytic DNA cleavage in human acute myelogenous leukemia cells by etoposide, camptothecin, and other cytotoxic anticancer drugs: a cautionary note. Cancer Res. 1989;49:5870–5878.

    CAS  PubMed  Google Scholar 

  45. Saeki K, Yuo A, Kato M, Miyazono K, Yazaki Y, Takaku F. Cell density-dependent apoptosis in HL-60 cells, which is mediated by an unknown soluble factor, is inhibited by transforming growth factor 131 and overexpression of Bcl-2. J Biol Chem. 1997;272:20003–20010.

    Article  CAS  PubMed  Google Scholar 

  46. Martin SJ, Lennon SV, Bonham AM, Cotter TG. Induction of apoptosis (programmed cell death) in human leukemic HL-60 cells by inhibition of RNA or protein synthesis. J Immunol. 1990;145:1859–1867.

    CAS  PubMed  Google Scholar 

  47. Robson CN, Hickson ID. Isolation of cDNA clones encoding a human apurinic/apyrimidinic endonuclease that corrects DNA repair and mutagenesis defects in E. coli xth (exonuclease III) mutants. Nucleic Acids Res. 1991;19:5519–5523.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  48. Xanthoudakis S, Miao G, Wang F, Pan YC, Curran T. Redox activation of Fos-Jun DNA binding activity is mediated by a DNA repair enzyme. EMBO J. 1992;11:3323–3335.

    CAS  PubMed Central  PubMed  Google Scholar 

  49. Seki S, Akiyama K, Watanabe S, Hatsushika M, Ikeda S, Tsutsui K. cDNA and deduced amino acid sequence of a mouse DNA repair enzyme (APEX nuclease) with significant homology to Escherichia coli exonuclease III. J Biol Chem. 1991;266:20797–20802.

    CAS  PubMed  Google Scholar 

  50. Barzilay G, Hickson ID. Structure and function of apurinic/apyrimidinic endonucleases. Bioessays.1995;17:713–719.

    Article  CAS  PubMed  Google Scholar 

  51. Yoshida A, Ueda T. Human AP endonuclease possesses a significant activity as major 3′ -5′ exonuclease in human leukemia cells. Biochem Biophys Res Commun. 2003;310:522–528.

    Article  CAS  PubMed  Google Scholar 

  52. Gorman MA, Morera S, Rothwell DG, et al. The crystal structure of the human DNA repair endonuclease HAP 1 suggests the recognition of extra-helical deoxyribose at DNA abasic sites. EMBO J. 1997;16:6548–6558.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  53. Xanthoudakis S, Smeyne RJ, Wallace JD, Curran T. The redox/ DNA repair protein, Ref-I, is essential for early embryonic development in mice. Proc Natl Acad Sci U S A. 1996;93:8919–8923.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  54. Demple B, Herman T, Chen DS. Cloning and expression of APE, the cDNA encoding the major human apurinic endonuclease: definition of a family of DNA repair enzymes. Proc Natl Acad Sci U S A. 1991;88:11450–11454.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  55. Chaudhry MA, Dedon PC, Wilson DM 3rd, Demple B, Weinfeld M. Removal by human apurinic/apyrimidinic endonuclease 1 (Ape 1) and Escherichia coli exonuclease III of 3′-phosphoglycolates from DNA treated with neocarzinostatin, calicheamicin, and γ-radiation. Biochem Pharmacol. 1999;57:531–538.

    Article  CAS  PubMed  Google Scholar 

  56. Jayaraman L, Murthy KG, Zhu C, Curran T, Xanthoudakis S, Prives C. Identification of redox/repair protein Ref-1 as a potent activator of p53. Genes Dev. 1997;11:558–570.

    Article  CAS  PubMed  Google Scholar 

  57. Walker LJ, Robson CN, Black E, Gillespie D, Hickson ID. Identification of residues in the human DNA repair enzyme HAP1 (Ref-1) that are essential for redox regulation of Jun DNA binding. Mol Cell Biol. 1993;13:5370–5376.

    CAS  PubMed Central  PubMed  Google Scholar 

  58. Xanthoudakis S, Curran T. Identification and characterization of Ref-1, a nuclear protein that facilitates AP-1 DNA-binding activity. EMBO J. 1992;11:653–665.

    CAS  PubMed Central  PubMed  Google Scholar 

  59. Gaiddon C, Moorthy NC, Prives C. Ref-1 regulates the transactivation and pro-apoptotic functions of p53 in vivo. EMBO J.1999;18:5609–5621.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  60. Hall JL, Wang X, Van A, Zhao Y, Gibbons GH. Overexpression of Ref-1 inhibits hypoxia and tumor necrosis factor-induced endothelial cell apoptosis through nuclear factor-κB-independent and -dependent pathways. Circ Res. 2001;88:1247–1253.

    Article  CAS  PubMed  Google Scholar 

  61. Wright SC, Wei QS, Zhong J, Zheng H, Kinder DH, Larrick JW. Purification of a 24-kD protease from apoptotic tumor cells that activates DNA fragmentation. J Exp Med. 1994;180:2113–2123.

    Article  CAS  PubMed  Google Scholar 

  62. Wright SC, Schellenberger U, Wang H, Kinder DH, Talhouk JW, Larrick JW. Activation of CPP32-like proteases is not sufficient to trigger apoptosis: inhibition of apoptosis by agents that suppress activation of AP24, but not CPP32-like activity. 1 Exp Med. 1997;186:1107–1117.

    Article  CAS  Google Scholar 

  63. Shimizu T, Pommier Y. Camptothecin-induced apoptosis in p53-null human leukemia HL60 cells and their isolated nuclei: effects of the protease inhibitors Z-VAD-fmk and dichloroisocoumarin suggest an involvement of both caspases and serine proteases. Leukemia. 1997;11:1238–1244.

    Article  CAS  PubMed  Google Scholar 

  64. Cote J, Ruiz-Carrillo A. Primers for mitochondrial DNA replication generated by endonuclease G. Science. 1993;261:765–769.

    Article  CAS  PubMed  Google Scholar 

  65. Braun T, Carvalho G, Coquelle A, et al. NF-κB constitutes a potential therapeutic target in high-risk myelodysplastic syndrome. Blood. 2006;107:1156–1165.

    Article  CAS  PubMed  Google Scholar 

  66. Saumet A, Slimane MB, Lanotte M, Lawler J, Dubernard V. Type 3 repeat/C-terminal domain of thrombospondin-1 triggers caspaseindependent cell death through CD47/αvβ3 in promyelocytic leukemia NB4 cells. Blood. 2005;106:658–667.

    Article  CAS  PubMed  Google Scholar 

  67. McKenna SL, Hoy T, Holmes JA, Whittaker JA, Jackson H, Padua RA. Flow cytometric apoptosis assays indicate different types of endonuclease activity in haematopoietic cells and suggest a cautionary approach to their quantitative use. Cytometry. 1998;31:130–136.

    Article  CAS  PubMed  Google Scholar 

  68. Iguchi K, Hirano K, Ishida R. Activation of caspase-3, proteolytic cleavage of DFF and no oligonucleosomal DNA fragmentation in apoptotic Molt-4 cells. J Biochem (Tokyo). 2002;131:469–475.

    Article  CAS  Google Scholar 

  69. Kawabata Y, Hirokawa M, Kitabayashi A, Horiuchi T, Kuroki J, Miura AB. Defective apoptotic signal transduction pathway downstream of caspase-3 in human B-lymphoma cells: a novel mechanism of nuclear apoptosis resistance. Blood. 1999;94:3523–3530.

    CAS  PubMed  Google Scholar 

  70. McConkey DJ, Chandra J, Wright S, et al. Apoptosis sensitivity in chronic lymphocytic leukemia is determined by endogenous endonuclease content and relative expression of BCL-2 and BAX. J Immunol. 1996;156:2624–2630.

    CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Akira Yoshida MD, PhD.

About this article

Cite this article

Yoshida, A., Pommier, Y. & Ueda, T. Endonuclease Activation and Chromosomal DNA Fragmentation during Apoptosis in Leukemia Cells. Int J Hematol 84, 31–37 (2006). https://doi.org/10.1007/BF03342699

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF03342699

Key words

Navigation