Skip to main content
Log in

Dynamic Behaviour of Metal Vapour in ARC Plasma During TIG Welding

  • Peer-Reviewed Section
  • Published:
Welding in the World Aims and scope Submit manuscript

Abstract

In the present paper, the mechanism of metal vapour in arc plasma is discussed through the dynamic observation of spectra of helium, chromium, manganese and iron during stationary TIG welding of stainless steel. Wavelengths from 400 nm to 700 nm are observed by a monochromator with a diffraction grating. Radiation from the arc is sent to the monochromator through optical lens and spectroscopic images are captured with 500 fps by a high-speed digital video camera. Spectra of metal elements exist locally in the arc plasma due to the dependence on plasma temperature, and also the intensive region of each metal spectrum depends on the kinds of metal elements. Most part of metal vapour produced from the weld pool surface is carried on the cathode jet and then swept away towards surroundings of the arc. However, if the driving force like diffusion in plasma is large, some metal elements can get across the cathode jet and then can be carried on the circulation flow towards the tungsten electrode.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Tanaka M. and Lowke J.J.: Predictions of weld pool profiles using plasma physics, Journal of Physics D: Applied Physics, 2007, vol. 40, no. 1, pp. R1–R24.

    Article  CAS  Google Scholar 

  2. Fauchais P.: Understanding plasma spraying, Journal of Physics D: Applied Physics, 2004, vol. 37, no. 9, pp. R86–R108.

    Article  CAS  Google Scholar 

  3. Nemchinsky V.A. and Severance W.S.: What we know and what we do not know about plasma cutting, Journal of Physics D: Applied Physics, 2006, vol. 39, no. 22, pp. R423–R438.

    Article  CAS  Google Scholar 

  4. Hirsh M.N. and Oskam H.J.: Gaseous Electronics, 1978, Academic Press, New York.

    Google Scholar 

  5. Lancaster J.F.: Physics of Welding, 1984, Pergamon Press, Oxford.

    Google Scholar 

  6. Boulos M.I., Fauchais P. and Pfender E.: Thermal Plasmas, 1994, Plenum Press, New York.

    Google Scholar 

  7. Etemadi K. and Pfender E.: Impact of anode evaporation on the anode region of high-intensity argon arc, Plasma Chemistry and Plasma Processing, 1985, vol. 5, no. 2, pp. 175–182.

    Article  CAS  Google Scholar 

  8. Dunn G.J., Allemand C.D. and Eagar T.W.: Metal vapors in gas tungsten arcs: Part I. Spectroscopy and monochromatic photography, Metallurgical and Materials Transactions A, 1986, vol. 17, no. 10, pp. 1851–1863.

    Article  Google Scholar 

  9. Dunn G.J. and Eagar T.W.: Metal vapors in gas tungsten arcs: Part II. Theoretical calculations of transport properties, Metallurgical Transactions A, 1986, vol. 17, no. 10, pp. 1865–1871.

    Article  Google Scholar 

  10. Farmer A.J.D., Haddad G.N. and Cram L.E.: Temperature determinations in a free-burning arc: III. Measurements with molten anodes, Journal of Physics D: Applied Physics, 1986, vol. 19, no. 9, pp. 1723–1730.

    Article  CAS  Google Scholar 

  11. Yamamoto K., Tanaka M., Tashiro S., Nakata K., Yamazaki K., Yamamoto E., Suzuki K. and Murphy A.B.: Metal vapour behaviour in thermal plasma of gas tungsten arcs during welding, Science and Technology of Welding & Joining, 2008, vol. 13, no. 6, pp. 566–572.

    Article  CAS  Google Scholar 

  12. Murphy A.B., Tanaka, Yamamoto K., Tashiro S., Sato T. and Lowke J.J.: Modelling of thermal plasmas for arc welding: the role of the shielding gas properties and of metal vapour, Journal of Physics D: Applied Physics, 2009, vol. 42, no. 19, p. 194006.

    Article  Google Scholar 

  13. Schnick M., Fussel U., Hertel M., Spille-Kohoff A. and Murphy A.B: Metal vapour causes a central minimum in arc temperature in gas-metal arc welding through increased radiative emission, Journal of Physics D: Applied Physics, 2010, vol. 43, no. 2, p. 022001.

    Article  Google Scholar 

  14. Tanaka M., Yamamoto K., Tashiro S., Nakata K., Yamamoto E., Yamazaki K., Suzuki K., Murphy A.B. and Lowke J.J.: Time-dependent calculations of molten pool formation and thermal plasma with metal vapour in gas tungsten arc welding, Journal of Physics D: Applied Physics, 2010, vol. 43, no. 43, p. 434009.

    Article  Google Scholar 

  15. Zielinska S., Musiol K., Dzierzega K., Pellerin S., Valensi F., de Izarra Ch. and Briand F.: Investigation of GTAW plasma by optical emission spectroscopy, Plasma Sources Science and Technology, 2007, vol. 16, no. 4, pp. 832–838.

    Article  CAS  Google Scholar 

  16. Wiese W.L., Smith M.W. and Miles B.M.: Atomic transition probabilities, 1966, NSRDS, National Standard Reference Data Series, Washington.

    Google Scholar 

  17. Terasaki H., Tanaka. M. and Ushio M.: Effects of metal vapour on electron temperature in helium gas tungsten arcs, Metallurgical and Materials Transactions A, 2002, vol. 33, no. 4, pp. 1183–1188.

    Article  Google Scholar 

  18. The Japan Institute of Metals: Data Book of Metals, 1993, Maruzen, Tokyo.

  19. National Institute of Standards and Technology (NIST): Atomic Spectra Database, 2008, http://www.nist.gov/pml/data/asd.cfm

  20. Tashiro S. and Tanaka M.: Effect of admixture of metal vapour on cathode surface temperature of plasma torch, Surface and Coatings Technology, 2008, vol. 202, no. 22-23, pp. 5255–5258.

    Article  CAS  Google Scholar 

  21. Tanaka M. and Ushio M.: Plasma state in free-burning argon arc and its effect on anode heat transfer, Journal of Physics D: Applied Physics, 1999, vol. 32, no. 10, pp. 1153–1162.

    Article  CAS  Google Scholar 

  22. Ushio M. and Matsuda F.: A Mathematical modeling of flow and temperature fields in gas-tungsten-arc, Quarterly Journal of the Japan Welding Society, 1988, vol. 6, no. 1, pp. 91–98.

    Article  Google Scholar 

  23. Murphy A.B.: Cataphoresis in electric arcs, Journal of Physics D: Applied Physics, 1998, vol. 31, no. 23, pp. 3383–3390.

    Article  CAS  Google Scholar 

  24. Murphy A.B.: A comparison of treatments of diffusion in thermal plasmas, Journal of Physics D: Applied Physics, 1996, vol. 29, no. 7, pp. 1922–1932.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Tanaka, M., Tsujimura, Y. & Yamazaki, K. Dynamic Behaviour of Metal Vapour in ARC Plasma During TIG Welding. Weld World 56, 30–36 (2012). https://doi.org/10.1007/BF03321142

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF03321142

IIW-Thesaurus keywords

Navigation