Skip to main content
Log in

Molecular Cloning, Bacterial Overexpression and Characterization of L-myo- inositol 1- Phosphate Synthase from a Monocotyledonous Resurrection Plant, Xerophyta viscosa Baker

  • Published:
Journal of Plant Biochemistry and Biotechnology Aims and scope Submit manuscript

Abstract

L-myo-inositol 1-phosphate synthase (EC 5.5.1.4; MIPS), an evolutionarily conserved enzyme-protein, catalyses the first and rate limiting step of inositol biosynthesis. Inositol and its derivatives play important roles in biological kingdom like growth regulation, membrane biogenesis, signal transduction and also acts as an osmolyte or osmoprotectant in abiotic stress tolerance. Here we report the cloning, sequencing and the characterization of the INO1 gene from Xerophyta viscosa (XINO1), a monocotyledonous resurrection plant. Nucleotide sequences of XINO1 show striking homology (70–99%) with a number of INO1 genes from plant sources particularly with the monocots. The gene is functionally identified through genetic complementation using a yeast inositol auxotrophic strain FY250. The gene is expressed in E. coli BL21, recombinant protein purified to homogeneity, biochemically characterized and compared with Oryza INO1 (RINO1) gene product. The XINO1 gene product is catalytically active in a broader range of lower temperature (between 10–40 °C) than the RINO1 gene- product. This is the first report of MIPS gene from any resurrection plant.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

Abbreviations

IPTG:

Isopropyl β-D-thiogalactopyranoside

PMSF:

Phenylmethylsulfonyl fluoride

G 6 P:

D-Glucose 6-Phosphate

X-gal:

5-Bromo-4-Chloro-3Indolyl-Beta-D-Thiogalactopyranoside

β-ME:

β-Mercaptoethanol

NAD:

Nicotinamide adeninedinucleotide

References

  1. Loewus FA & Loewus MW, Annu Rev Plant Physiol, 34 (1983) 137.

    Article  CAS  Google Scholar 

  2. Pittner F, Tovorova JJ, Karnitskaya EY, Khoklov AS & Hofmann- Ostenhof O, Mol Cell Biochem, 25 (1979) 43.

    Article  CAS  PubMed  Google Scholar 

  3. RayChaudhuri A, Hait NC, DasGupta S, Bhaduri TJ, Deb R & Majumder AL, Plant Physiol, 115 (1997) 727.

    CAS  PubMed  PubMed Central  Google Scholar 

  4. Donahue TF & Henry SA, J Bioi Chem, 256 (1981) 7077.

    CAS  Google Scholar 

  5. Klig LS, Zobel PA, Devry CG & Losberger C, Yeast, 10 (1994) 789.

    Article  CAS  PubMed  Google Scholar 

  6. Dasgupta S, Adhikari J & Majumder AL, Physiol Plant, 61 (1984) 412.

    Article  CAS  Google Scholar 

  7. Majumder AL, Johnson MD & Henry SA, Biochim Biophys Acta, 1348 (1997) 245.

    Article  CAS  PubMed  Google Scholar 

  8. Majumder AL, Dattagupta S, Goldwasser P, Donahue T & Henry SA, Mol Gen Genet, 184 (1981) 347.

    Article  CAS  PubMed  Google Scholar 

  9. Klig LS & Henry SA, Proc Natl Acad Sci, USA, 81 (1984) 3816.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Abu-Abied M & Holland D, Plant Physiol, 106 (1994) 1689.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Johnson MD & Sussex IM, Plant Physiol, 107 (1995) 613.

    CAS  PubMed  PubMed Central  Google Scholar 

  12. Ishitani M, Majumder AL, Bornhouser A, Michalowski CB, Jenson RG & Bohnert HJ, Plant J, 9 (1996) 537.

    Article  CAS  PubMed  Google Scholar 

  13. Smart CC & Fleming AJ, Plant J, 294 (1993) 305.

    Google Scholar 

  14. Lohia A, Hait NC & Majumder AL, Mol Biochem Parasitol, 98 (1999) 67.

    Article  CAS  PubMed  Google Scholar 

  15. Chen L, Zhou C, Yang H & Roberts MF, Biochemistry, 39 (2000) 12415.

    Article  CAS  PubMed  Google Scholar 

  16. Majee M, Maitra S, Ghosh Dastidar K, Pattnaik S, Chatterjee A, Hait NC, Das KP & Majumder AL, J Bioi Chem, 279 (2004) 28539.

    Article  CAS  Google Scholar 

  17. Majumder AL, Chatterjee A, Ghosh Dastidar K & Majee M, FEBS Letts, 533 (2003) 3.

    Article  Google Scholar 

  18. Barnett JEG, Brice RE & Corina DL, Biochem J, 119 (1970) 183.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Chen RS, Toribara TY & Warner H, Anal Biochem, 28 (1956) 1756.

    CAS  Google Scholar 

  20. Bradford MW, Anal Biocbem., 72 (1976) 248.

    Article  CAS  Google Scholar 

  21. Mundree SG, Whittaker A, Thomson JA & Farrant JM, Planta, 211 (2000) 693.

    Article  CAS  PubMed  Google Scholar 

  22. Sambrook J, Fritsch EF & Manniatis T, Molecular cloning: A laboratory manual, 2nd ed, Cold Spring Harbor Laboratory Press, New York (1989).

    Google Scholar 

  23. Bachhawat N & Mande SC, J Mol Bioi, 291 (1999) 531.

    Article  CAS  Google Scholar 

  24. Ito H, Fukuda Y, Murata K & Kimura A, J Bacteriol, 153 (1983) 163

    CAS  PubMed  PubMed Central  Google Scholar 

  25. Laemmli UK, Nature, 227 (1970) 680.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Arun Lahiri Majumder.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Majee, M., Patra, B., Mundree, S.G. et al. Molecular Cloning, Bacterial Overexpression and Characterization of L-myo- inositol 1- Phosphate Synthase from a Monocotyledonous Resurrection Plant, Xerophyta viscosa Baker. J. Plant Biochem. Biotechnol. 14, 95–99 (2005). https://doi.org/10.1007/BF03263235

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF03263235

Key words

Navigation