Skip to main content
Log in

Blood-Based Protein Biomarkers for Diagnosis and Classification of Neurodegenerative Diseases

Current Progress and Clinical Potential

  • Current Opinion
  • Published:
Molecular Diagnosis & Therapy Aims and scope Submit manuscript

Abstract

Biomarker research is a rapidly advancing field in medicine. Recent advances in genomic, genetic, epigenetic, neuroscientific, proteomic, and metabolomic knowledge and technologies have opened the way to thriving research. In the most general sense, a biomarker refers to any useful characteristic that can be measured and used as an indicator of a normal biologic process, a pathogenic process, or a pharmacologic response to a therapeutic agent. Despite the extensive resources concentrated on this area, there are very few biomarkers currently available that qualify and are satisfactorily validated for mental disorders, and there is still a major lack of biomarkers for typifying neurodegenerative disorders such as Alzheimer’s disease and Parkinson’s disease. This article provides an overview of this field of research and focuses on recent advances in biomarker research in Alzheimer’s disease and Parkinson’s disease.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Table I

Similar content being viewed by others

References

  1. Thomas L, editor. Labor und Diagnose. Frankfurt am Main: TH-Books, 2007

    Google Scholar 

  2. Ritsner M. The handbook of neuropsychiatric biomarkers, endophenotypes and genes. Berlin: Springer, 2009

    Book  Google Scholar 

  3. National Institute of Mental Health. The National Institute of Mental Health strategic plan [online]. Available from URL: http://www.nimh.nih.gov/about/strategic-planning-reports/index.shtml [Accessed 2011 Apr 19]

  4. NIH Definitions Working Group. Biomarkers and surrogate endpoints in clinical trial research: definitions and conceptual model. In: Downing GJ, editor. Biomarkers and surrogate endpoints: clinical research and applications. Amsterdam: Elsevier, 2000

    Google Scholar 

  5. Biomarker Definitions Working Group. Biomarkers and surrogate end-points: preferred definitions and conceptual framework. Clin Pharmacol Ther 2001; 69: 89–95

    Article  Google Scholar 

  6. US FDA. Guidance for industry: pharmacogenomic data submissions. Rockville (MD): FDA; 2005 Mar [online]. Available from URL: http://www.fda.gov/downloads/Drugs/GuidanceComplianceRegulatoryInformation/Guidances/ucm079849.pdf [Accessed 2011 May 11]

  7. Prentice RL. Surrogate endpoints in clinical trials: definition and operational criteria. Stat Med 1989 Apr; 8(4): 431–40

    Article  PubMed  CAS  Google Scholar 

  8. McKhann G, Drachman D, Folstein M, et al. Clinical diagnosis of Alzheimer’s disease: report of the NINCDS-ADRDA Work Group under the auspices of the Department of Health and Human Services Task Force on Alzheimer’s Disease. Neurology 1984; 34: 939–44

    Article  PubMed  CAS  Google Scholar 

  9. Hampel H, Frank R, Broich K, et al. Biomarkers for Alzheimer’s disease: academic, industry and regulatory perspectives. Nat Rev Drug Discov 2010; 9(7): 560–74

    Article  PubMed  CAS  Google Scholar 

  10. Blennow K, Hampel H, Weiner M, et al. Cerebrospinal fluid and plasma biomarkers in Alzheimer disease. Nat Rev Neurol 2010; 6(3): 131–44

    Article  PubMed  CAS  Google Scholar 

  11. Blennow K, Hampel H. CSF markers for incipient Alzheimer’s disease. Lancet Neurol 2003; 2(10): 605–13

    Article  PubMed  CAS  Google Scholar 

  12. Hampel H, Burger K, Teipel SJ, et al. Core candidate neurochemical and imaging biomarkers of Alzheimer’s disease. Alzheimers Dement 2008; 4(1): 38–48

    Article  PubMed  CAS  Google Scholar 

  13. Zipser BD, Johanson CE, Gonzalez L, et al. Microvascular injury and blood-brain barrier leakage in Alzheimer’s disease. Neurobiol Aging 2007; 28(7): 977–86

    Article  PubMed  CAS  Google Scholar 

  14. Consensus report of the Working Group on: “Molecular and Biochemical Markers of Alzheimer’s Disease”. The Ronald and Nancy Reagan Research Institute of the Alzheimer’s Association and the National Institute on Aging Working Group. Neurobiol Aging 1998; 19(2): 109–16

    Article  Google Scholar 

  15. Frank RA, Galasko D, Hampel H, et al. Biological markers for therapeutic trials in Alzheimer’s disease: proceedings of the Biological Markers Working Group; NIA Initiative on Neuroimaging in Alzheimer’s Disease. Neurobiol Aging 2003; 24(4): 521–36

    Article  PubMed  Google Scholar 

  16. Buerger K, Frisoni G, Uspenskaya O, et al. Validation of Alzheimer’s disease CSF and plasma biological markers: the multicentre reliability study of the pilot European Alzheimer’s Disease Neuroimaging Initiative (E-ADNI). Exp Gerontol 2009; 44(9): 579–85

    Article  PubMed  CAS  Google Scholar 

  17. Gravina SA, Ho L, Eckman CB, et al. Amyloid beta protein (A beta) in Alzheimer’s disease brain: biochemical and immunocytochemical analysis with antibodies specific for forms ending at A beta 40 or A beta 42 (43). J Biol Chem 1995; 270(13): 7013–6

    Article  PubMed  CAS  Google Scholar 

  18. Fukumoto H, Asami-Odaka A, Suzuki N, et al. Amyloid beta protein deposition in normal aging has the same characteristics as that in Alzheimer’s disease: predominance of A beta 42 (43) and association of A beta 40 with cored plaques. Am J Pathol 1996; 148(1): 259–65

    PubMed  CAS  Google Scholar 

  19. Jarrett JT, Berger EP, Lansbury Jr PT. The carboxy terminus of the beta amyloid protein is critical for the seeding of amyloid formation: implications for the pathogenesis of Alzheimer’s disease. Biochemistry 1993; 32(18): 4693–7

    Article  PubMed  CAS  Google Scholar 

  20. Bates KA, Verdile G, Li QX, et al. Clearance mechanisms of Alzheimer’s amyloid-beta peptide: implications for therapeutic design and diagnostic tests. Mol Psychiatry 2009; 14(5): 469–86

    Article  PubMed  CAS  Google Scholar 

  21. Scheuner D, Eckman C, Jensen M, et al. Secreted amyloid beta-protein similar to that in the senile plaques of Alzheimer’s disease is increased in vivo by the presenilin 1 and 2 and APP mutations linked to familial Alzheimer’s disease. Nat Med 1996; 2(8): 864–70

    Article  PubMed  CAS  Google Scholar 

  22. Kosaka T, Imagawa M, Seki K, et al. The beta APP717 Alzheimer mutation increases the percentage of plasma amyloid-beta protein ending at A beta42 (43). Neurology 1997; 48(3): 741–5

    Article  PubMed  CAS  Google Scholar 

  23. Schupf N, Patel B, Silverman W, et al. Elevated plasma amyloid beta-peptide 1-42 and onset of dementia in adults with Down syndrome. Neurosci Lett 2001; 301(3): 199–203

    Article  PubMed  CAS  Google Scholar 

  24. Tamaoka A, Fukushima T, Sawamura N, et al. Amyloid beta protein in plasma from patients with sporadic Alzheimer’s disease. J Neurol Sci 1996; 141(1-2): 65–8

    Article  PubMed  CAS  Google Scholar 

  25. Vanderstichele H, Van Kerschaver E, Hesse C, et al. Standardization of measurement of beta-amyloid(1–42) in cerebrospinal fluid and plasma. Amyloid 2000; 7(4): 2 5-58

    Google Scholar 

  26. Fukumoto H, Tennis M, Locascio JJ, et al. Age but not diagnosis is the main predictor of plasma amyloid beta-protein levels. Arch Neurol 2003; 60(7): 958–64

    Article  PubMed  Google Scholar 

  27. Mayeux R, Honig LS, Tang MX, et al. Plasma A[beta]40 and A[beta]42 and Alzheimer’s disease: relation to age, mortality, and risk. Neurology 2003; 61(9): 1185–90

    Article  PubMed  CAS  Google Scholar 

  28. Mayeux R, Tang MX, Jacobs DM, et al. Plasma amyloid beta-peptide 1–42 and incipient Alzheimer’s disease. Ann Neurol 1999; 46(3): 412–6

    Article  PubMed  CAS  Google Scholar 

  29. Pomara N, Willoughby LM, Sidtis JJ, et al. Selective reductions in plasma Abeta 1–42 in healthy elderly subjects during longitudinal follow-up: a preliminary report. Am J Geriatr Psychiatry 2005; 13(10): 914–7

    PubMed  Google Scholar 

  30. Schupf N, Tang MX, Fukuyama H, et al. Peripheral Abeta subspecies as risk biomarkers of Alzheimer’s disease. Proc Natl Acad Sci U S A 2008; 105(37): 14052–7

    Article  PubMed  CAS  Google Scholar 

  31. van Oijen M, Hofman A, Soares HD, et al. Plasma Abeta(1–40) and Abeta(1–42) and the risk of dementia: a prospective case-cohort study. Lancet Neurol 2006; 5(8): 655–60

    Article  PubMed  Google Scholar 

  32. Graff-Radford NR, Crook JE, Lucas J, et al. Association of low plasma Abeta42/Abeta40 ratios with increased imminent risk for mild cognitive impairment and Alzheimer disease. Arch Neurol 2007; 64(3): 354–62

    Article  PubMed  Google Scholar 

  33. Fukumoto H, Ingelsson M, Garevik N, et al. APOE epsilon 3/epsilon 4 heterozygotes have an elevated proportion of apolipoprotein E4 in cerebrospinal fluid relative to plasma, independent of Alzheimer’s disease diagnosis. Exp Neurol 2003; 183(1): 249–53

    Article  PubMed  CAS  Google Scholar 

  34. Arvanitakis Z, Lucas JA, Younkin LH, et al. Serum creatinine levels correlate with plasma amyloid beta protein. Alzheimer Dis Assoc Disord 2002; 16(3): 187–90

    Article  PubMed  CAS  Google Scholar 

  35. Hampel H, Wilcock G, Andrieu S, et al. Biomarkers for Alzheimer’s disease therapeutic trials. Prog Neurobiol. Epub 2010 Dec 2

  36. Fleisher AS, Raman R, Siemers ER, et al. Phase 2 safety trial targeting amyloid beta production with a gamma-secretase inhibitor in Alzheimer disease. Arch Neurol 2008; 65(8): 1031–8

    Article  PubMed  Google Scholar 

  37. Bard F, Cannon C, Barbour R, et al. Peripherally administered antibodies against amyloid beta-peptide enter the central nervous system and reduce pathology in a mouse model of Alzheimer disease. Nat Med 2000; 6(8): 916–9

    Article  PubMed  CAS  Google Scholar 

  38. Schenk D, Barbour R, Dunn W, et al. Immunization with amyloid-beta attenuates Alzheimer-disease-like pathology in the PDAPP mouse. Nature 1999; 400(6740): 173–7

    Article  PubMed  CAS  Google Scholar 

  39. Hock C, Konietzko U, Papassotiropoulos A, et al. Generation of antibodies specific for beta-amyloid by vaccination of patients with Alzheimer disease. Nat Med 2002; 8(11): 1270–5

    Article  PubMed  CAS  Google Scholar 

  40. Nicoll JA, Wilkinson D, Holmes C, et al. Neuropathology of human Alzheimer disease after immunization with amyloid-beta peptide: a case report. Nat Med 2003; 9(4): 448–52

    Article  PubMed  CAS  Google Scholar 

  41. Du Y, Dodel R, Hampel H, et al. Reduced levels of amyloid beta-peptide antibody in Alzheimer disease. Neurology 2001; 57(5): 801–5

    Article  PubMed  CAS  Google Scholar 

  42. Hyman BT, Smith C, Buldyrev I, et al. Autoantibodies to amyloid-beta and Alzheimer’s disease. Ann Neurol 2001; 49(6): 808–10

    Article  PubMed  CAS  Google Scholar 

  43. Weksler ME, Relkin N, Turkenich R, et al. Patients with Alzheimer disease have lower levels of serum anti-amyloid peptide antibodies than healthy elderly individuals. Exp Gerontol 2002; 37(7): 943–8

    Article  PubMed  CAS  Google Scholar 

  44. Brettschneider S, Morgenthaler NG, Teipel SJ, et al. Decreased serum amyloid beta(1–42) autoantibody levels in Alzheimer’s disease, determined by a newly developed immuno-precipitation assay with radiolabeled amyloid beta(1–42) peptide. Biol Psychiatry 2005; 57(7): 813–6

    Article  PubMed  CAS  Google Scholar 

  45. Hock C, Konietzko U, Streffer JR, et al. Antibodies against beta-amyloid slow cognitive decline in Alzheimer’s disease. Neuron 2003; 38(4): 547–54

    Article  PubMed  CAS  Google Scholar 

  46. Moir RD, Tseitlin KA, Soscia S, et al. Autoantibodies to redox-modified oligomeric Abeta are attenuated in the plasma of Alzheimer’s disease patients. J Biol Chem 2005; 280(17): 17458–63

    Article  PubMed  CAS  Google Scholar 

  47. Holmes C, Boche D, Wilkinson D, et al. Long-term effects of Abeta42 immunisation in Alzheimer’s disease: follow-up of a randomised, placebo-controlled phase I trial. Lancet 2008; 372(9634): 216–23

    Article  PubMed  CAS  Google Scholar 

  48. Padovani A, Pastorino L, Borroni B, et al. Amyloid precursor protein in platelets: a peripheral marker for the diagnosis of sporadic AD. Neurology 2001; 57(12): 2243–8

    Article  PubMed  CAS  Google Scholar 

  49. Bush AI, Martins RN, Rumble B, et al. The amyloid precursor protein of Alzheimer’s disease is released by human platelets. J Biol Chem 1990; 265(26): 15977–83

    PubMed  CAS  Google Scholar 

  50. Di Luca M, Pastorino L, Bianchetti A, et al. Differential level of platelet amyloid beta precursor protein isoforms: an early marker for Alzheimer disease. Arch Neurol 1998; 55(9): 1195–200

    Article  PubMed  Google Scholar 

  51. Di Luca M, Pastorino L, Cattabeni F, et al. Abnormal pattern of platelet APP isoforms in Alzheimer disease and Down syndrome. Arch Neurol 1996; 53(11): 1162–6

    Article  PubMed  Google Scholar 

  52. Padovani A, Borroni B, Colciaghi F, et al. Abnormalities in the pattern of platelet amyloid precursor protein forms in patients with mild cognitive impairment and Alzheimer disease. Arch Neurol 2002; 59(1): 71–5

    Article  PubMed  Google Scholar 

  53. Rosenberg RN, Baskin F, Fosmire JA, et al. Altered amyloid protein processing in platelets of patients with Alzheimer disease. Arch Neurol 1997; 54(2): 139–44

    Article  PubMed  CAS  Google Scholar 

  54. Baskin F, Rosenberg RN, Iyer L, et al. Platelet APP isoform ratios correlate with declining cognition in AD. Neurology 2000; 54(10): 1907–9

    Article  PubMed  CAS  Google Scholar 

  55. Baskin F, Rosenberg RN, Fang X, et al. Correlation of statin-increased platelet APP ratios and reduced blood lipids in AD patients. Neurology 2003; 60(12): 2006–7

    Article  PubMed  CAS  Google Scholar 

  56. Borroni B, Colciaghi F, Pastorino L, et al. Amyloid precursor protein in platelets of patients with Alzheimer disease: effect of acetylcholinesterase inhibitor treatment. Arch Neurol 2001; 58(3): 442–6

    Article  PubMed  CAS  Google Scholar 

  57. Bush AI, Tanzi RE. Alzheimer disease-related abnormalities of amyloid beta precursor protein isoforms in the platelet: the brain’s delegate in the periphery? Arch Neurol 1998; 55(9): 1179–80

    Article  PubMed  CAS  Google Scholar 

  58. Cordy JM, Hooper NM, Turner AJ. The involvement of lipid rafts in Alzheimer’s disease. Mol Membr Biol 2006; 23(1): 111–22

    Article  PubMed  CAS  Google Scholar 

  59. Panza F, D’Introno A, Colacicco AM, et al. Lipid metabolism in cognitive decline and dementia. Brain Res Rev 2006; 51(2): 275–92

    Article  PubMed  CAS  Google Scholar 

  60. Simons M, Keller P, De Strooper B, et al. Cholesterol depletion inhibits the generation of beta-amyloid in hippocampal neurons. Proc Natl Acad Sci USA 1998; 95(11): 6460–4

    Article  PubMed  CAS  Google Scholar 

  61. Wirths O, Thelen K, Breyhan H, et al. Decreased plasma cholesterol levels during aging in transgenic mouse models of Alzheimer’s disease. Exp Gerontol 2006; 41(2): 220–4

    Article  PubMed  CAS  Google Scholar 

  62. Kuusisto J, Koivisto K, Mykkanen L, et al. Association between features of the insulin resistance syndrome and Alzheimer’s disease independently of apolipoprotein E4 phenotype: cross sectional population based study. BMJ 1997; 315(7115): 1045–9

    Article  PubMed  CAS  Google Scholar 

  63. Solfrizzi V, Panza F, D’Introno A, et al. Lipoprotein(a), apolipoprotein E genotype, and risk of Alzheimer’s disease. J Neurol Neurosurg Psychiatry 2002; 72(6): 732–6

    Article  PubMed  CAS  Google Scholar 

  64. Puglielli L, Konopka G, Pack-Chung E, et al. Acyl-coenzyme A: cholesterol acyltransferase modulates the generation of the amyloid beta-peptide. Nat Cell Biol 2001; 3(10): 905–12

    Article  PubMed  CAS  Google Scholar 

  65. Fassbender K, Simons M, Bergmann C, et al. Simvastatin strongly reduces levels of Alzheimer’s disease beta-amyloid peptides Abeta 42 and Abeta 40 in vitro and in vivo. Proc Natl Acad Sci U S A 2001; 98(10): 5856–61

    Article  PubMed  CAS  Google Scholar 

  66. Refolo LM, Pappolla MA, LaFrancois J, et al. A cholesterol-lowering drug reduces beta-amyloid pathology in a transgenic mouse model of Alzheimer’s disease. Neurobiol Dis 2001; 8(5): 890–9

    Article  PubMed  CAS  Google Scholar 

  67. Sparks DL, Kuo YM, Roher A, et al. Alterations of Alzheimer’s disease in the cholesterol-fed rabbit, including vascular inflammation: preliminary observations. Ann N Y Acad Sci 2000; 903: 335–44

    Article  PubMed  CAS  Google Scholar 

  68. Evans RM, Emsley CL, Gao S, et al. Serum cholesterol, APOE genotype, and the risk of Alzheimer’s disease: a population-based study of African Americans. Neurology 2000; 54(1): 240–2

    Article  PubMed  CAS  Google Scholar 

  69. Kivipelto M, Helkala EL, Laakso MP, et al. Midlife vascular risk factors and Alzheimer’s disease in later life: longitudinal, population based study. BMJ 2001; 322(7300): 1447–51

    Article  PubMed  CAS  Google Scholar 

  70. Notkola IL, Sulkava R, Pekkanen J, et al. Serum total cholesterol, apolipoprotein E epsilon 4 allele, and Alzheimer’s disease. Neuroepidemiology 1998; 17(1): 14–20

    Article  PubMed  CAS  Google Scholar 

  71. Patterson C, Feightner JW, Garcia A, et al. Diagnosis and treatment of dementia: 1. Risk assessment and primary prevention of Alzheimer disease. CMAJ 2008; 178(5): 548–56

    Article  PubMed  Google Scholar 

  72. Yaffe K, Barrett-Connor E, Lin F, et al. Serum lipoprotein levels, statin use, and cognitive function in older women. Arch Neurol 2002; 59(3): 378–84

    Article  PubMed  Google Scholar 

  73. Jick H, Zornberg GL, Jick SS, et al. Statins and the risk of dementia. Lancet 2000; 356(9242): 1627–31

    Article  PubMed  CAS  Google Scholar 

  74. Rockwood K, Kirkland S, Hogan DB, et al. Use of lipid-lowering agents, indication bias, and the risk of dementia in community-dwelling elderly people. Arch Neurol 2002; 59(2): 223–7

    Article  PubMed  Google Scholar 

  75. Wolozin B, Kellman W, Ruosseau P, et al. Decreased prevalence of Alzheimer disease associated with 3-hydroxy-3-methyglutaryl coenzyme A reductase inhibitors. Arch Neurol 2000; 57(10): 1439–43

    Article  PubMed  CAS  Google Scholar 

  76. Shepherd J, Blauw GJ, Murphy MB, et al. Pravastatin in elderly individuals at risk of vascular disease (PROSPER): a randomised controlled trial. Lancet 2002; 360(9346): 1623–30

    Article  PubMed  CAS  Google Scholar 

  77. Heart Protection Study Collaborative Group. MRC/BHF Heart Protection Study of antioxidant vitamin supplementation in 20,536 high-risk individuals: a randomised placebo-controlled trial. Lancet 2002; 360(9326): 23–33

    Article  Google Scholar 

  78. Charite University. Trial of simvastatin in amnestic mild cognitive impairment (MCI) patients (SIMaMCI) [ClinicalTrials.gov identifier NCT00842920]. US National Institutes of Health, ClinicalTrials.gov [online]. Available from URL: http://clinicaltrials.gov/show/NCT00842920 [Accessed 2011 May 11]

  79. Vega GL, Weiner MF, Lipton AM, et al. Reduction in levels of 24S-hydroxycholesterol by statin treatment in patients with Alzheimer disease. Arch Neurol 2003; 60(4): 510–5

    Article  PubMed  Google Scholar 

  80. Papassotiropoulos A, Lutjohann D, Bagli M, et al. 24S-hydroxycholesterol in cerebrospinal fluid is elevated in early stages of dementia. J Psychiatr Res 2002; 36(1): 27–32

    Article  PubMed  CAS  Google Scholar 

  81. Schonknecht P, Lutjohann D, Pantel J, et al. Cerebrospinal fluid 24S-hydroxycholesterol is increased in patients with Alzheimer’s disease compared to healthy controls. Neurosci Lett 2002; 324(1): 83–5

    Article  PubMed  CAS  Google Scholar 

  82. Lutjohann D, Papassotiropoulos A, Bjorkhem I, et al. Plasma 24S-hydroxycholesterol (cerebrosterol) is increased in Alzheimer and vascular demented patients. J Lipid Res 2000; 41(2): 195–8

    PubMed  CAS  Google Scholar 

  83. Leoni V, Masterman T, Patel P, et al. Side chain oxidized oxysterols in cerebrospinal fluid and the integrity of blood-brain and blood-cerebrospinal fluid barriers. J Lipid Res 2003; 44(4): 793–9

    Article  PubMed  CAS  Google Scholar 

  84. Kolsch H, Heun R, Kerksiek A, et al. Altered levels of plasma 24S- and 27-hydroxycholesterol in demented patients. Neurosci Lett 2004; 368(3): 303–8

    Article  PubMed  CAS  Google Scholar 

  85. Locatelli S, Lutjohann D, Schmidt HH, et al. Reduction of plasma 24S-hydroxycholesterol (cerebrosterol) levels using high-dosage simvastatin in patients with hypercholesterolemia: evidence that simvastatin affects cholesterol metabolism in the human brain. Arch Neurol 2002; 59(2): 213–6

    Article  PubMed  Google Scholar 

  86. Gomez-Isla T, West HL, Rebeck GW, et al. Clinical and pathological correlates of apolipoprotein E epsilon 4 in Alzheimer’s disease. Ann Neurol 1996; 39(1): 62–70

    Article  PubMed  CAS  Google Scholar 

  87. Mann VM, Cooper JM, Krige D, et al. Brain, skeletal muscle and platelet homogenate mitochondrial function in Parkinson’s disease. Brain 1992; 115 (Pt 2): 333–42

    Article  PubMed  Google Scholar 

  88. Saunders AM, Strittmatter WJ, Schmechel D, et al. Association of apolipoprotein E allele epsilon 4 with late-onset familial and sporadic Alzheimer’s disease. Neurology 1993; 43(8): 1467–72

    Article  PubMed  CAS  Google Scholar 

  89. Yu CE, Seltman H, Peskind ER, et al. Comprehensive analysis of APOE and selected proximate markers for late-onset Alzheimer’s disease: patterns of linkage disequilibrium and disease/marker association. Genomics 2007; 89(6): 655–65

    Article  PubMed  CAS  Google Scholar 

  90. Schiele F, De Bacquer D, Vincent-Viry M, et al. Apolipoprotein E serum concentration and polymorphism in six European countries: the ApoEurope Project. Atherosclerosis 2000; 152(2): 475–88

    Article  PubMed  CAS  Google Scholar 

  91. Ignatius MJ, Gebicke-Harter PJ, Skene JH, et al. Expression of apolipoprotein E during nerve degeneration and regeneration. Proc Natl Acad Sci U S A 1986; 83(4): 1125–9

    Article  PubMed  CAS  Google Scholar 

  92. Panegyres PK, Goldblatt J, Walpole I, et al. Genetic testing for Alzheimer’s disease. Med J Aust 2000; 172(7): 339–43

    PubMed  CAS  Google Scholar 

  93. Hsiung GY, Sadovnick AD, Feldman H. Apolipoprotein E epsilon4 genotype as a risk factor for cognitive decline and dementia: data from the Canadian Study of Health and Aging. CMAJ 2004; 171(8): 863–7

    Article  PubMed  Google Scholar 

  94. Statement on use of apolipoprotein E testing for Alzheimer disease: American College of Medical Genetics/American Society of Human Genetics Working Group on ApoE and Alzheimer Disease. JAMA 1995; 274(20): 1627–9

    Article  Google Scholar 

  95. Sunderland T, Mirza N, Putnam KT, et al. Cerebrospinal fluid beta-amyloid1–42 and tau in control subjects at risk for Alzheimer’s disease: the effect of APOE epsilon4 allele. Biol Psychiatry 2004; 56(9): 670–6

    Article  PubMed  CAS  Google Scholar 

  96. Galasko D, Chang L, Motter R, et al. High cerebrospinal fluid tau and low amyloid b42 levels in the clinical diagnosis of Alzheimer disease and relation to apogene E genotype. Arch Neurol 1998; 55: 937–45

    Article  PubMed  CAS  Google Scholar 

  97. Buerger K, Teipel SJ, Zinkowski R, et al. Increased levels of CSF phosphorylated tau in apolipoprotein E varepsilon4 carriers with mild cognitive impairment. Neurosci Lett 2005; 391(1-2): 48–50

    Article  PubMed  CAS  Google Scholar 

  98. Ewers M, Zhong Z, Burger K, et al. Increased CSF-BACE 1 activity is associated with ApoE-epsilon 4 genotype in subjects with mild cognitive impairment and Alzheimer’s disease. Brain 2008; 131 (Pt 5): 1252–8

    Article  PubMed  Google Scholar 

  99. Taddei K, Clarnette R, Gandy SE, et al. Increased plasma apolipoprotein E (apoE) levels in Alzheimer’s disease. Neurosci Lett 1997; 223(1): 29–32

    Article  PubMed  Google Scholar 

  100. Scacchi R, Gambina G, Ruggeri M, et al. Plasma levels of apolipoprotein E and genetic markers in elderly patients with Alzheimer’s disease. Neurosci Lett 1999; 259(1): 33–6

    Article  PubMed  CAS  Google Scholar 

  101. Slooter AJ, de Knijff P, Hofman A, et al. Serum apolipoprotein E level is not increased in Alzheimer’s disease: the Rotterdam Study. Neurosci Lett 1998; 248(1): 21–4

    Article  PubMed  CAS  Google Scholar 

  102. Panza F, Solfrizzi V, Colacicco AM, et al. Apolipoprotein E (APOE) polymorphism influences serum APOE levels in Alzheimer’s disease patients and centenarians. Neuroreport 2003; 14(4): 605–8

    Article  PubMed  CAS  Google Scholar 

  103. Lehtimaki T, Pirttila T, Mehta PD, et al. Apolipoprotein E (apoE) polymorphism and its influence on ApoE concentrations in the cerebrospinal fluid in Finnish patients with Alzheimer’s disease. Hum Genet 1995; 95(1): 39–42

    Article  PubMed  CAS  Google Scholar 

  104. Siest G, Bertrand P, Herbeth B, et al. Apolipoprotein E polymorphisms and concentration in chronic diseases and drug responses. Clin Chem Lab Med 2000; 38(9): 841–52

    Article  PubMed  CAS  Google Scholar 

  105. Bonilla E, Tanji K, Hirano M, et al. Mitochondrial involvement in Alzheimer’s disease. Biochim Biophys Acta 1999; 1410(2): 171–82

    Article  PubMed  CAS  Google Scholar 

  106. Butterfield DA, Castegna A, Lauderback CM, et al. Evidence that amyloid beta-peptide-induced lipid peroxidation and its sequelae in Alzheimer’s disease brain contribute to neuronal death. Neurobiol Aging 2002; 23(5): 655–64

    Article  PubMed  Google Scholar 

  107. Jeandel C, Nicolas MB, Dubois F, et al. Lipid peroxidation and free radical scavengers in Alzheimer’s disease. Gerontology 1989; 35(5-6): 275–82

    Article  PubMed  CAS  Google Scholar 

  108. Polidori MC, Mecocci P. Plasma susceptibility to free radical-induced anti-oxidant consumption and lipid peroxidation is increased in very old subjects with Alzheimer disease. J Alzheimers Dis 2002; 4(6): 517–22

    PubMed  CAS  Google Scholar 

  109. Zaman Z, Roche S, Fielden P, et al. Plasma concentrations of vitamins A and E and carotenoids in Alzheimer’s disease. Age Ageing 1992; 21(2): 91–4

    Article  PubMed  CAS  Google Scholar 

  110. Sano M, Ernesto C, Thomas RG, et al. A controlled trial of selegiline, alpha-tocopherol, or both as treatment for Alzheimer’s disease: the Alzheimer’s Disease Cooperative Study. N Engl J Med 1997; 336(17): 1216–22

    Article  PubMed  CAS  Google Scholar 

  111. MRC/BHF Heart Protection Study of cholesterol lowering with simvastatin in 20,536 high-risk individuals: a randomised placebo-controlled trial. Lancet 2002; 360(9326): 7–22

    Article  Google Scholar 

  112. Boothby LA, Doering PL. Vitamin C and vitamin E for Alzheimer’s disease. Ann Pharmacother 2005; 39(12): 2073–80

    Article  PubMed  CAS  Google Scholar 

  113. Miller 3rd ER, Pastor-Barriuso R, Dalal D, et al. Meta-analysis: high-dosage vitamin E supplementation may increase all-cause mortality. Ann Intern Med 2005; 142(1): 37–46

    PubMed  CAS  Google Scholar 

  114. Giasson BI, Ischiropoulos H, Lee VM, et al. The relationship between oxidative/nitrative stress and pathological inclusions in Alzheimer’s and Parkinson’s diseases. Free Radic Biol Med 2002; 32(12): 1264–75

    Article  PubMed  CAS  Google Scholar 

  115. Praticò D, Clark CM, Liun F, et al. Increase of brain oxidative stress in mild cognitive impairment: a possible predictor of Alzheimer disease. Arch Neurol 2002; 59(6): 972–6

    Article  PubMed  Google Scholar 

  116. Pratico D, Lee VMY, Trojanowski JQ, et al. Increased F2-isoprostanes in Alzheimer’s disease: evidence for enhanced lipid peroxidation in vivo. FASEB J 1998; 12(15): 1777–83

    PubMed  CAS  Google Scholar 

  117. Praticò D, Uryu K, Leight S, et al. Increased lipid peroxidation precedes amyloid plaque formation in an animal model of Alzheimer amyloidosis. J Neurosci 2001; 21(12): 4183–7

    PubMed  Google Scholar 

  118. Cracowski JL, Durand T, Bessard G. Isoprostanes as a biomarker of lipid peroxidation in humans: physiology, pharmacology and clinical implications. Trends Pharmacol Sci 2002; 23(8): 360–6

    Article  PubMed  CAS  Google Scholar 

  119. Praticò D. Alzheimer’s disease and oxygen radicals: new insights. Biochem Pharmacol 2002; 63(4): 563–7

    Article  PubMed  Google Scholar 

  120. Praticò D, Clark CM, Lee VM, et al. Increased 8,12-iso-iPF2alpha-VI in Alzheimer’s disease: correlation of a noninvasive index of lipid peroxidation with disease severity. Ann Neurol 2000; 48(5): 809–12

    Article  PubMed  Google Scholar 

  121. Montine TJ, Quinn JF, Milatovic D, et al. Peripheral F2-isoprostanes and F4-neuroprostanes are not increased in Alzheimer’s disease. Ann Neurol 2002; 52(2): 175–9

    Article  PubMed  CAS  Google Scholar 

  122. Irizarry MC, Yao Y, Hyman BT, et al. Plasma F2A isoprostane levels in Alzheimer’s and Parkinson’s disease. Neurodegener Dis 2007; 4(6): 403–5

    Article  PubMed  CAS  Google Scholar 

  123. Akiyama H, Barger S, Barnum S, et al. Inflammation and Alzheimer’s disease. Neurobiol Aging 2000; 21(3): 383–421

    Article  PubMed  CAS  Google Scholar 

  124. Weiner HL, Selkoe DJ. Inflammation and therapeutic vaccination in CNS diseases. Nature 2002; 420(6917): 879–84

    Article  PubMed  CAS  Google Scholar 

  125. Irizarry MC. Biomarkers of Alzheimer disease in plasma. NeuroRx 2004; 1(2): 226–34

    Article  PubMed  Google Scholar 

  126. Teunissen CE, de Vente J, Steinbusch HW, et al. Biochemical markers related to Alzheimer’s dementia in serum and cerebrospinal fluid. Neurobiol Aging 2002; 23(4): 485–508

    Article  PubMed  CAS  Google Scholar 

  127. Lanzrein AS, Johnston CM, Perry VH, et al. Longitudinal study of inflammatory factors in serum, cerebrospinal fluid, and brain tissue in Alzheimer disease: interleukin-1beta, interleukin-6, interleukin-1 receptor antagonist, tumor necrosis factor-alpha, the soluble tumor necrosis factor receptors I and II, and alpha1-antichymotrypsin. Alzheimer Dis Assoc Disord 1998; 12(3): 215–27

    Article  PubMed  CAS  Google Scholar 

  128. O’Bryant SE, Xiao G, Barber R, et al. A serum protein-based algorithm for the detection of Alzheimer disease. Arch Neurol 2010; 67(9): 1077–81

    Article  PubMed  Google Scholar 

  129. Abraham CR, Selkoe DJ, Potter H. Immunochemical identification of the serine protease inhibitor alpha 1-antichymotrypsin in the brain amyloid deposits of Alzheimer’s disease. Cell 1988; 52(4): 487–501

    Article  PubMed  CAS  Google Scholar 

  130. Padmanabhan J, Levy M, Dickson DW, et al. Alpha1-antichymotrypsin, an inflammatory protein overexpressed in Alzheimer’s disease brain, induces tau phosphorylation in neurons. Brain 2006; 129 (Pt 11): 3020–34

    Article  PubMed  Google Scholar 

  131. Pirttila T, Mehta PD, Frey H, et al. Alpha 1-antichymotrypsin and IL-1 beta are not increased in CSF or serum in Alzheimer’s disease. Neurobiol Aging 1994; 15(3): 313–7

    Article  PubMed  CAS  Google Scholar 

  132. Licastro F, Morini MC, Polazzi E, et al. Increased serum alpha 1-antichymotrypsin in patients with probable Alzheimer’s disease: an acute phase reactant without the peripheral acute phase response. J Neuroimmunol 1995; 57(1-2): 71–5

    Article  PubMed  CAS  Google Scholar 

  133. Matsubara E, Hirai S, Amari M, et al. Alpha 1-antichymotrypsin as a possible biochemical marker for Alzheimer-type dementia. Ann Neurol 1990; 28(4): 561–7

    Article  PubMed  CAS  Google Scholar 

  134. DeKosky ST, Ikonomovic MD, Wang X, et al. Plasma and cerebrospinal fluid alpha1-antichymotrypsin levels in Alzheimer’s disease: correlation with cognitive impairment. Ann Neurol 2003; 53(1): 81–90

    Article  PubMed  CAS  Google Scholar 

  135. Licastro F, Pedrini S, Caputo L, et al. Increased plasma levels of interleukin-1, interleukin-6 and alpha-1-antichymotrypsin in patients with Alzheimer’s disease: peripheral inflammation or signals from the brain? J Neuroimmunol 2000; 103(1): 97–102

    Article  PubMed  CAS  Google Scholar 

  136. Engelhart MJ, Geerlings MI, Meijer J, et al. Inflammatory proteins in plasma and the risk of dementia: the Rotterdam Study. Arch Neurol 2004; 61(5): 668–72

    Article  PubMed  Google Scholar 

  137. Hampel H, Scheloske M, Haslinger A. The interleukin-6 receptor complex. In: Rogers J, editor. Neuroinflammatory mechanisms in Alzheimer’s disease: basic and clinical research. Basel: Birkhäuser Publishers, 2001: 121–43

    Chapter  Google Scholar 

  138. Hampel H, Haslinger A, Scheloske M, et al. Pattern of interleukin-6 receptor complex immunoreactivity between cortical regions of rapid autopsy normal and Alzheimer’s disease brain. Eur Arch Psychiatry Clin Neurosci 2005; 255(4): 269–78

    Article  PubMed  Google Scholar 

  139. Hampel H, Schoen D, Schwarz MJ, et al. Interleukin-6 is not altered in cerebrospinal fluid of first-degree relatives and patients with Alzheimer’s disease. Neurosci Lett 1997; 228(3): 143–6

    Article  PubMed  CAS  Google Scholar 

  140. Hampel H, Sunderland T, Kotter HU, et al. Decreased soluble interleukin-6 receptor in cerebrospinal fluid of patients with Alzheimer’s disease. Brain Res 1998; 780(2): 356–9

    Article  PubMed  CAS  Google Scholar 

  141. Bonaccorso S, Lin A, Song C, et al. Serotonin-immune interactions in elderly volunteers and in patients with Alzheimer’s disease (DAT): lower plasma tryptophan availability to the brain in the elderly and increased serum interleukin-6 in DAT. Aging (Milano) 1998; 10(4): 316–23

    CAS  Google Scholar 

  142. Kalman J, Juhasz A, Laird G, et al. Serum interleukin-6 levels correlate with the severity of dementia in Down syndrome and in Alzheimer’s disease. Acta Neurol Scand 1997; 96(4): 236–40

    Article  PubMed  CAS  Google Scholar 

  143. Maes M, DeVos N, Wauters A, et al. Inflammatory markers in younger vs elderly normal volunteers and in patients with Alzheimer’s disease. J Psychiatr Res 1999; 33(5): 397–405

    Article  PubMed  CAS  Google Scholar 

  144. Singh VK, Guthikonda P. Circulating cytokines in Alzheimer’s disease. J Psychiatr Res 1997; 31(6): 657–60

    Article  PubMed  CAS  Google Scholar 

  145. Tarkowski E, Blennow K, Wallin A, et al. Intracerebral production of tumor necrosis factor-alpha, a local neuroprotective agent, in Alzheimer disease and vascular dementia. J Clin Immunol 1999; 19(4): 223–30

    Article  PubMed  CAS  Google Scholar 

  146. Angelis P, Scharf S, Mander A, et al. Serum interleukin-6 and interleukin-6 soluble receptor in Alzheimer’s disease. Neurosci Lett 1998; 244(2): 106–8

    Article  PubMed  CAS  Google Scholar 

  147. Blum-Degen D, Muller T, Kuhn W, et al. Interleukin-1 beta and interleukin-6 are elevated in the cerebrospinal fluid of Alzheimer’s and de novo Parkinson’s disease patients. Neurosci Lett 1995; 202(1-2): 17–20

    Article  PubMed  CAS  Google Scholar 

  148. Chao CC, Ala TA, Hu S, et al. Serum cytokine levels in patients with Alzheimer’s disease. Clin Diagn Lab Immunol 1994; 1(4): 433–6

    PubMed  CAS  Google Scholar 

  149. van Duijn CM, Hofman A, Nagelkerken L. Serum levels of interleukin-6 are not elevated in patients with Alzheimer’s disease. Neurosci Lett 1990; 108(3): 350–4

    Article  PubMed  Google Scholar 

  150. Bagli M, Papassotiropoulos A, Hampel H, et al. Polymorphisms of the gene encoding the inflammatory cytokine interleukin-6 determine the magnitude of the increase in soluble interleukin-6 receptor levels in Alzheimer’s disease: results of a pilot study. Eur Arch Psychiatry Clin Neurosci 2003; 253(1): 44–8

    Article  PubMed  Google Scholar 

  151. de la Torre JC. Is Alzheimer’s disease a neurodegenerative or a vascular disorder? Data, dogma, and dialectics. Lancet Neurol 2004; 3(3): 184–90

    Article  PubMed  Google Scholar 

  152. Snowdon DA, Greiner LH, Mortimer JA, et al. Brain infarction and the clinical expression of Alzheimer disease: the Nun Study. JAMA 1997; 277(10): 813–7

    Article  PubMed  CAS  Google Scholar 

  153. Buerger K, Ernst A, Ewers M, et al. Blood-based microcirculation markers in Alzheimer’s disease: diagnostic value of midregional pro-atrial natriuretic peptide/C-terminal endothelin-1 precursor fragment ratio. Biol Psychiatry 2009; 65(11): 979–84

    Article  PubMed  CAS  Google Scholar 

  154. Ray S, Britschgi M, Herbert C, et al. Classification and prediction of clinical Alzheimer’s diagnosis based on plasma signaling proteins. Nat Med 2007; 13(11): 1359–62

    Article  PubMed  CAS  Google Scholar 

  155. Selle H, Lamerz J, Buerger K, et al. Identification of novel biomarker candidates by differential peptidomics analysis of cerebrospinal fluid in Alzheimer’s disease. Comb Chem High Throughput Screen 2005; 8(8): 801–6

    Article  PubMed  CAS  Google Scholar 

  156. Marksteiner J, Kemmler G, Weiss EM, et al. Five out of 16 plasma signaling proteins are enhanced in plasma of patients with mild cognitive impairment and Alzheimer’s disease. Neurobiol Aging 2011 Mar; 32(3): 539–40

    Article  PubMed  CAS  Google Scholar 

  157. Hye A, Lynham S, Thambisetty M, et al. Proteome-based plasma biomarkers for Alzheimer’s disease. Brain 2006; 129 (Pt 11): 3042–50

    Article  PubMed  CAS  Google Scholar 

  158. Fearnley JM, Lees AJ. Ageing and Parkinson’s disease: substantia nigra regional selectivity. Brain 1991; 114 (Pt 5): 2283–301

    Article  PubMed  Google Scholar 

  159. Marek K, Innis R, van Dyck C, et al. [123I]beta-CIT SPECT imaging assessment of the rate of Parkinson’s disease progression. Neurology 2001; 57(11): 2089–94

    Article  PubMed  CAS  Google Scholar 

  160. Morrish PK, Sawle GV, Brooks DJ. Regional changes in [18F]dopa metabolism in the striatum in Parkinson’s disease. Brain 1996; 119 (Pt 6): 2097–103

    Article  PubMed  Google Scholar 

  161. Stocchi F, Olanow CW. Neuroprotection in Parkinson’s disease: clinical trials. Ann Neurol 2003; 53Suppl. 3: S87–97; discussion S97-9

    Article  PubMed  CAS  Google Scholar 

  162. Eller M, Williams DR. Biological fluid biomarkers in neurodegenerative parkinsonism. Nat Rev Neurol 2009; 5(10): 561–70

    Article  PubMed  CAS  Google Scholar 

  163. Hughes AJ, Daniel SE, Ben-Shlomo Y, et al. The accuracy of diagnosis of parkinsonian syndromes in a specialist movement disorder service. Brain 2002; 125 (Pt 4): 861–70

    Article  PubMed  Google Scholar 

  164. O-Sullivan I, Chopra A, Carr J, et al. Immunity to growth factor receptor-bound protein 10, a signal transduction molecule, inhibits the growth of breast cancer in mice. Cancer Res 2008; 68(7): 2463–70

    Article  PubMed  CAS  Google Scholar 

  165. Marek K, Jennings D, Tamagnan G, et al. Biomarkers for Parkinson’s [corrected] disease: tools to assess Parkinson’s disease onset and progression [published erratum appears in Ann Neurol 2009; 65 (2): 232]. Ann Neurol 2008; 64Suppl. 2: S1 11–21

    Google Scholar 

  166. Jenner P. Oxidative stress in Parkinson’s disease. Ann Neurol 2003; 53Suppl. 3: S26–36; discussion S36-8

    Article  PubMed  CAS  Google Scholar 

  167. Parker Jr WD, Boyson SJ, Parks JK. Abnormalities of the electron transport chain in idiopathic Parkinson’s disease. Ann Neurol 1989; 26(6): 719–23

    Article  PubMed  Google Scholar 

  168. Schapira AH. Mitochondrial involvement in Parkinson’s disease, Huntington’s disease, hereditary spastic paraplegia and Friedreich’s ataxia. Biochim Biophys Acta 1999; 1410(2): 159–70

    Article  PubMed  CAS  Google Scholar 

  169. Abe T, Isobe C, Murata T, et al. Alteration of 8-hydroxyguanosine concentrations in the cerebrospinal fluid and serum from patients with Parkinson’s disease. Neurosci Lett 2003; 336(2): 105–8

    Article  PubMed  CAS  Google Scholar 

  170. Kikuchi A, Takeda A, Onodera H, et al. Systemic increase of oxidative nucleic acid damage in Parkinson’s disease and multiple system atrophy. Neurobiol Dis 2002; 9(2): 244–8

    Article  PubMed  CAS  Google Scholar 

  171. Sato S, Mizuno Y, Hattori N. Urinary 8-hydroxydeoxyguanosine levels as a biomarker for progression of Parkinson disease. Neurology 2005; 64(6): 1081–3

    Article  PubMed  CAS  Google Scholar 

  172. Nagakubo D, Taira T, Kitaura H, et al. DJ-1, a novel oncogene which transforms mouse NIH3T3 cells in cooperation with Ras. Biochem Biophys Res Commun 1997; 231(2): 509–13

    Article  PubMed  CAS  Google Scholar 

  173. Maita C, Tsuji S, Yabe I, et al. Secretion of DJ-1 into the serum of patients with Parkinson’s disease. Neurosci Lett 2008; 431(1): 86–9

    Article  PubMed  CAS  Google Scholar 

  174. Waragai M, Nakai M, Wei J, et al. Plasma levels of DJ-1 as a possible marker for progression of sporadic Parkinson’s disease. Neurosci Lett 2007; 425(1): 18–22

    Article  PubMed  CAS  Google Scholar 

  175. Connolly J, Siderowf A, Clark CM, et al. F2 isoprostane levels in plasma and urine do not support increased lipid peroxidation in cognitively impaired Parkinson disease patients. Cogn Behav Neurol 2008; 21(2): 83–6

    Article  PubMed  Google Scholar 

  176. Gotz ME, Gerstner A, Harth R, et al. Altered redox state of platelet coenzyme Q10 in Parkinson’s disease. J Neural Transm 2000; 107(1): 41–8

    Article  PubMed  CAS  Google Scholar 

  177. Sohmiya M, Tanaka M, Tak NW, et al. Redox status of plasma coenzyme Q10 indicates elevated systemic oxidative stress in Parkinson’s disease. J Neurol Sci 2004; 223(2): 161–6

    Article  PubMed  CAS  Google Scholar 

  178. Ames BN, Cathcart R, Schwiers E, et al. Uric acid provides an antioxidant defense in humans against oxidant- and radical-caused aging and cancer: a hypothesis. Proc Natl Acad Sci U S A 1981; 78(11): 6858–62

    Article  PubMed  CAS  Google Scholar 

  179. Schwarzschild MA, Schwid SR, Marek K, et al. Serum urate as a predictor of clinical and radiographic progression in Parkinson disease. Arch Neurol 2008; 65(6): 716–23

    Article  PubMed  Google Scholar 

  180. Ilic TV, Jovanovic M, Jovicic A, et al. Oxidative stress indicators are elevated in de novo Parkinson’s disease patients. Funct Neurol 1999; 14(3): 141–7

    PubMed  CAS  Google Scholar 

  181. Buhmann C, Arlt S, Kontush A, et al. Plasma and CSF markers of oxidative stress are increased in Parkinson’s disease and influenced by anti-parkinsonian medication. Neurobiol Dis 2004; 15(1): 160–70

    Article  PubMed  CAS  Google Scholar 

  182. Ferrarese C, Tremolizzo L, Rigoldi M, et al. Decreased platelet glutamate uptake and genetic risk factors in patients with Parkinson’s disease. Neurol Sci 2001; 22(1): 65–6

    Article  PubMed  CAS  Google Scholar 

  183. Bonuccelli U, Piccini P, Del Dotto P, et al. Platelet monoamine oxidase B activity in parkinsonian patients. J Neurol Neurosurg Psychiatry 1990; 53(10): 854–5

    Article  PubMed  CAS  Google Scholar 

  184. Zhou G, Miura Y, Shoji H, et al. Platelet monoamine oxidase B and plasma beta-phenylethylamine in Parkinson’s disease. J Neurol Neurosurg Psychiatry 2001; 70(2): 229–31

    Article  PubMed  CAS  Google Scholar 

  185. Caronti B, Tanda G, Colosimo C, et al. Reduced dopamine in peripheral blood lymphocytes in Parkinson’s disease. Neuroreport 1999; 10(14): 2907–10

    Article  PubMed  CAS  Google Scholar 

  186. Barbanti P, Fabbrini G, Ricci A, et al. Increased expression of dopamine receptors on lymphocytes in Parkinson’s disease. Mov Disord 1999; 14(5): 764–71

    Article  PubMed  CAS  Google Scholar 

  187. Nagai Y, Ueno S, Saeki Y, et al. Decrease of the D3 dopamine receptor mRNA expression in lymphocytes from patients with Parkinson’s disease. Neurology 1996; 46(3): 791–5

    Article  PubMed  CAS  Google Scholar 

  188. Caronti B, Antonini G, Calderaro C, et al. Dopamine transporter immunoreactivity in peripheral blood lymphocytes in Parkinson’s disease. J Neural Transm 2001; 108(7): 803–7

    Article  PubMed  CAS  Google Scholar 

  189. Jenner P. Presymptomatic detection of Parkinson’s disease. J Neural Transm Suppl 1993; 40: 23–36

    PubMed  CAS  Google Scholar 

  190. Goedert M, Spillantini MG. Lewy body diseases and multiple system atrophy as alpha-synucleinopathies. Mol Psychiatry 1998; 3(6): 462–5

    Article  PubMed  CAS  Google Scholar 

  191. Spillantini MG, Crowther RA, Jakes R, et al. Filamentous alpha-synuclein inclusions link multiple system atrophy with Parkinson’s disease and dementia with Lewy bodies. Neurosci Lett 1998; 251(3): 205–8

    Article  PubMed  CAS  Google Scholar 

  192. Spillantini MG, Crowther RA, Jakes R, et al. Alpha-synuclein in filamentous inclusions of Lewy bodies from Parkinson’s disease and dementia with Lewy bodies. Proc Natl Acad Sci U S A 1998; 95(11): 6469–73

    Article  PubMed  CAS  Google Scholar 

  193. Galvin JE, Schuck TM, Lee VM, et al. Differential expression and distribution of alpha-, beta-, and gamma-synuclein in the developing human substantia nigra. Exp Neurol 2001; 168(2): 347–55

    Article  PubMed  CAS  Google Scholar 

  194. Hashimoto M, Masliah E. Alpha-synuclein in Lewy body disease and Alzheimer’s disease. Brain Pathol 1999; 9(4): 707–20

    Article  PubMed  CAS  Google Scholar 

  195. Kahle PJ, Neumann M, Ozmen L, et al. Subcellular localization of wild-type and Parkinson’s disease-associated mutant alpha-synuclein in human and transgenic mouse brain. J Neurosci 2000; 20(17): 6365–73

    PubMed  CAS  Google Scholar 

  196. Tofaris GK, Spillantini MG. Physiological and pathological properties of alpha-synuclein. Cell Mol Life Sci 2007; 64(17): 2194–201

    Article  PubMed  CAS  Google Scholar 

  197. Ostrerova N, Petrucelli L, Farrer M, et al. Alpha-synuclein shares physical and functional homology with 14-3-3 proteins. J Neurosci 1999; 19(14): 5782–91

    PubMed  CAS  Google Scholar 

  198. George JM, Jin H, Woods WS, et al. Characterization of a novel protein regulated during the critical period for song learning in the zebra finch. Neuron 1995; 15(2): 361–72

    Article  PubMed  CAS  Google Scholar 

  199. Abeliovich A, Schmitz Y, Farinas I, et al. Mice lacking alpha-synuclein display functional deficits in the nigrostriatal dopamine system. Neuron 2000; 25(1): 239–52

    Article  PubMed  CAS  Google Scholar 

  200. Polymeropoulos MH. Genetics of Parkinson’s disease. Ann N Y Acad Sci 2000; 920: 28–32

    Article  PubMed  CAS  Google Scholar 

  201. Singleton AB, Farrer M, Johnson J, et al. Alpha-synuclein locus triplication causes Parkinson’s disease. Science 2003; 302(5646): 841

    Article  PubMed  CAS  Google Scholar 

  202. Dauer W, Kholodilov N, Vila M, et al. Resistance of alpha-synuclein null mice to the parkinsonian neurotoxin MPTP. Proc Natl Acad Sci U S A 2002; 99(22): 14524–9

    Article  PubMed  CAS  Google Scholar 

  203. Giasson BI, Duda JE, Quinn SM, et al. Neuronal alpha-synucleinopathy with severe movement disorder in mice expressing A53T human alpha-synuclein. Neuron 2002; 34(4): 521–33

    Article  PubMed  CAS  Google Scholar 

  204. Masliah E, Rockenstein E, Veinbergs I, et al. Dopaminergic loss and inclusion body formation in alpha-synuclein mice: implications for neurodegenerative disorders. Science 2000; 287(5456): 1265–9

    Article  PubMed  CAS  Google Scholar 

  205. Borghi R, Marchese R, Negro A, et al. Full length alpha-synuclein is present in cerebrospinal fluid from Parkinson’s disease and normal subjects. Neurosci Lett 2000; 287(1): 65–7

    Article  PubMed  CAS  Google Scholar 

  206. El-Agnaf OM, Salem SA, Paleologou KE, et al. Alpha-synuclein implicated in Parkinson’s disease is present in extracellular biological fluids, including human plasma. FASEB J 2003; 17(13): 1945–7

    PubMed  CAS  Google Scholar 

  207. Barbour R, Kling K, Anderson JP, et al. Red blood cells are the major source of alpha-synuclein in blood. Neurodegener Dis 2008; 5(2): 55–9

    Article  PubMed  CAS  Google Scholar 

  208. Michell AW, Luheshi LM, Barker RA. Skin and platelet alpha-synuclein as peripheral biomarkers of Parkinson’s disease. Neurosci Lett 2005; 381(3): 294–8

    Article  PubMed  CAS  Google Scholar 

  209. Tamo W, Imaizumi T, Tanji K, et al. Expression of alpha-synuclein, the precursor of non-amyloid beta component of Alzheimer’s disease amyloid, in human cerebral blood vessels. Neurosci Lett 2002; 326(1): 5–8

    Article  PubMed  CAS  Google Scholar 

  210. Li QX, Mok SS, Laughton KM, et al. Plasma alpha-synuclein is decreased in subjects with Parkinson’s disease. Exp Neurol 2007; 204(2): 583–8

    Article  PubMed  CAS  Google Scholar 

  211. Bucciantini M, Giannoni E, Chiti F, et al. Inherent toxicity of aggregates implies a common mechanism for protein misfolding diseases. Nature 2002; 416(6880): 507–11

    Article  PubMed  CAS  Google Scholar 

  212. Conway KA, Lee SJ, Rochet JC, et al. Acceleration of oligomerization, not fibrillization, is a shared property of both alpha-synuclein mutations linked to early-onset Parkinson’s disease: implications for pathogenesis and therapy. Proc Natl Acad Sci U S A 2000; 97(2): 571–6

    Article  PubMed  CAS  Google Scholar 

  213. Conway KA, Lee SJ, Rochet JC, et al. Accelerated oligomerization by Parkinson’s disease linked alpha-synuclein mutants. Ann N Y Acad Sci 2000; 920: 42–5

    Article  PubMed  CAS  Google Scholar 

  214. El-Agnaf OM, Salem SA, Paleologou KE, et al. Detection of oligomeric forms of alpha-synuclein protein in human plasma as a potential biomarker for Parkinson’s disease. FASEB J 2006; 20(3): 419–25

    Article  PubMed  CAS  Google Scholar 

  215. Hashimoto M, Yoshimoto M, Sisk A, et al. NACP, a synaptic protein involved in Alzheimer’s disease, is differentially regulated during megakaryocyte differentiation. Biochem Biophys Res Commun 1997; 237(3): 611–6

    Article  PubMed  CAS  Google Scholar 

  216. Li QX, Campbell BC, McLean CA, et al. Platelet alpha- and gamma-synucleins in Parkinson’s disease and normal control subjects. J Alzheimers Dis 2002; 4(4): 309–15

    PubMed  CAS  Google Scholar 

  217. Mano Y, Nakamuro T, Takayanagi T, et al. Sweat function in Parkinson’s disease. J Neurol 1994; 241(10): 573–6

    Article  PubMed  CAS  Google Scholar 

  218. Fujiwara H, Hasegawa M, Dohmae N, et al. Alpha-synuclein is phosphorylated in synucleinopathy lesions. Nat Cell Biol 2002; 4(2): 160–4

    PubMed  CAS  Google Scholar 

  219. Polymeropoulos MH, Higgins JJ, Golbe LI, et al. Mapping of a gene for Parkinson’s disease to chromosome 4q21-q23. Science 1996; 274(5290): 1197–9

    Article  PubMed  CAS  Google Scholar 

  220. Fuchs J, Tichopad A, Golub Y, et al. Genetic variability in the SNCA gene influences alpha-synuclein levels in the blood and brain. FASEB J 2008; 22(5): 1327–34

    Article  PubMed  CAS  Google Scholar 

  221. Hoepken HH, Gispert S, Azizov M, et al. Parkinson patient fibroblasts show increased alpha-synuclein expression. Exp Neurol 2008; 212(2): 303–13

    Article  CAS  Google Scholar 

  222. Papachroni KK, Ninkina N, Papapanagiotou A, et al. Autoantibodies to alpha-synuclein in inherited Parkinson’s disease. J Neurochem 2007; 101(3): 749–56

    Article  PubMed  CAS  Google Scholar 

  223. Neff F, Wei X, Nolker C, et al. Immunotherapy and naturally occurring autoantibodies in neurodegenerative disorders. Autoimmun Rev 2008; 7(6): 501–7

    Article  PubMed  CAS  Google Scholar 

  224. Zecca L, Wilms H, Geick S, et al. Human neuromelanin induces neuroinflammation and neurodegeneration in the rat substantia nigra: implications for Parkinson’s disease. Acta Neuropathol 2008; 116(1): 47–55

    Article  PubMed  CAS  Google Scholar 

  225. Zucca FA, Giaveri G, Gallorini M, et al. The neuromelanin of human substantia nigra: physiological and pathogenic aspects. Pigment Cell Res 2004; 17(6): 610–7

    Article  PubMed  CAS  Google Scholar 

  226. Beach TG, Sue LI, Walker DG, et al. Marked microglial reaction in normal aging human substantia nigra: correlation with extraneuronal neuromelanin pigment deposits. Acta Neuropathol 2007; 114(4): 419–24

    Article  PubMed  Google Scholar 

  227. McGeer PL, Itagaki S, Boyes BE, et al. Reactive microglia are positive for HLA-DR in the substantia nigra of Parkinson’s and Alzheimer’s disease brains. Neurology 1988; 38(8): 1285–91

    Article  PubMed  CAS  Google Scholar 

  228. Rogers J, Luber-Narod J, Styren SD, et al. Expression of immune system-associated antigens by cells of the human central nervous system: relationship to the pathology of Alzheimer’s disease. Neurobiol Aging 1988; 9(4): 339–49

    Article  PubMed  CAS  Google Scholar 

  229. Matsumoto Y, Ohmori K, Fujiwara M. Microglial and astroglial reactions to inflammatory lesions of experimental autoimmune encephalomyelitis in the rat central nervous system. J Neuroimmunol 1992; 37(1-2): 23–33

    Article  PubMed  CAS  Google Scholar 

  230. Raine CS. Multiple sclerosis: immune system molecule expression in the central nervous system. J Neuropathol Exp Neurol 1994; 53(4): 328–37

    Article  PubMed  CAS  Google Scholar 

  231. Chao CC, Hu S, Molitor TW, et al. Activated microglia mediate neuronal cell injury via a nitric oxide mechanism. J Immunol 1992; 149(8): 2736–41

    PubMed  CAS  Google Scholar 

  232. Lee SC, Liu W, Dickson DW, et al. Cytokine production by human fetal microglia and astrocytes: differential induction by lipopolysaccharide and IL-1 beta. J Immunol 1993; 150(7): 2659–67

    PubMed  CAS  Google Scholar 

  233. Brosnan CF, Battistini L, Raine CS, et al. Reactive nitrogen intermediates in human neuropathology: an overview. Dev Neurosci 1994; 16(3-4): 152–61

    Article  PubMed  CAS  Google Scholar 

  234. Minghetti L, Levi G. Induction of prostanoid biosynthesis by bacterial lipopolysaccharide and isoproterenol in rat microglial cultures. J Neurochem 1995; 65(6): 2690–8

    Article  PubMed  CAS  Google Scholar 

  235. Espey MG, Chernyshev ON, Reinhard Jr JF, et al. Activated human microglia produce the excitotoxin quinolinic acid. Neuroreport 1997; 8(2): 431–4

    Article  PubMed  CAS  Google Scholar 

  236. Lawson LJ, Perry VH, Dri P, et al. Heterogeneity in the distribution and morphology of microglia in the normal adult mouse brain. Neuroscience 1990; 39(1): 151–70

    Article  PubMed  CAS  Google Scholar 

  237. Kim WG, Mohney RP, Wilson B, et al. Regional difference in susceptibility to lipopolysaccharide-induced neurotoxicity in the rat brain: role of microglia. J Neurosci 2000; 20(16): 6309–16

    PubMed  CAS  Google Scholar 

  238. Chen H, O’Reilly EJ, Schwarzschild MA, et al. Peripheral inflammatory bio-markers and risk of Parkinson’s disease. Am J Epidemiol 2008; 167(1): 90–5

    Article  PubMed  Google Scholar 

  239. Dufek M, Hamanova M, Lokaj J, et al. Serum inflammatory biomarkers in Parkinson’s disease. Parkinsonism Relat Disord 2009; 15(4): 318–20

    Article  PubMed  CAS  Google Scholar 

  240. Scalzo P, Kümmer A, Bretas TL, et al. Serum levels of brain-derived neurotrophic factor correlate with motor impairment in Parkinson’s disease. J Neurol 2010; 257(4): 540–5

    Article  PubMed  CAS  Google Scholar 

  241. Rentzos M, Nikolaou C, Andreadou E, et al. Circulating interleukin-15 and RANTES chemokine in Parkinson’s disease. Acta Neurol Scand 2007; 116(6): 374–9

    Article  PubMed  CAS  Google Scholar 

  242. Rentzos M, Nikolaou C, Andreadou E, et al. Circulating interleukin-10 and interleukin-12 in Parkinson’s disease. Acta Neurol Scand 2009; 119(5): 332–7

    Article  PubMed  CAS  Google Scholar 

  243. Barker RA, Cahn AP. Parkinson’s disease: an autoimmune process. Int J Neurosci 1988; 43(1-2): 1–7

    Article  PubMed  CAS  Google Scholar 

  244. McRae-Degueurce A, Rosengren L, Haglid K, et al. Immunocytochemical investigations on the presence of neuron-specific antibodies in the CSF of Parkinson’s disease cases. Neurochem Res 1988; 13(7): 679–84

    Article  PubMed  CAS  Google Scholar 

  245. Fiszer U, Mix E, Fredrikson S, et al. Parkinson’s disease and immunological abnormalities: increase of HLA-DR expression on monocytes in cerebrospinal fluid and of CD45RO+ T cells in peripheral blood. Acta Neurol Scand 1994; 90(3): 160–6

    Article  PubMed  CAS  Google Scholar 

  246. Fiszer U, Mix E, Fredrikson S, et al. Gamma delta+ T cells are increased in patients with Parkinson’s disease. J Neurol Sci 1994; 121(1): 39–45

    Article  PubMed  CAS  Google Scholar 

  247. Chiba S, Matsumoto H, Saitoh M, et al. A correlation study between serum adenosine deaminase activities and peripheral lymphocyte subsets in Parkinson’s disease. J Neurol Sci 1995; 132(2): 170–3

    Article  PubMed  CAS  Google Scholar 

  248. Hisanaga K, Asagi M, Itoyama Y, et al. Increase in peripheral CD4 bright+ CD8 dull+ T cells in Parkinson disease. Arch Neurol 2001; 58(10): 1580–3

    Article  PubMed  CAS  Google Scholar 

  249. Hollywood K, Brison DR, Goodacre R. Metabolomics: current technologies and future trends. Proteomics 2006; 6(17): 4716–23

    Article  PubMed  CAS  Google Scholar 

  250. Kaddurah-Daouk R, Krishnan KR. Metabolomics: a global biochemical approach to the study of central nervous system diseases. Neuropsycho-pharmacology 2009; 34(1): 173–86

    Article  CAS  Google Scholar 

  251. Kristal BS, Shurubor YI, Kaddurah-Daouk R, et al. Metabolomics in the study of aging and caloric restriction. Methods Mol Biol 2007; 371: 393–409

    Article  PubMed  CAS  Google Scholar 

  252. Lan MJ, McLoughlin GA, Griffin JL, et al. Metabonomic analysis identifies molecular changes associated with the pathophysiology and drug treatment of bipolar disorder. Mol Psychiatry 2009; 14(3): 269–79

    Article  PubMed  CAS  Google Scholar 

  253. Quinones MP, Kaddurah-Daouk R. Metabolomics tools for identifying biomarkers for neuropsychiatric diseases. Neurobiol Dis 2009; 35(2): 165–76

    Article  PubMed  CAS  Google Scholar 

  254. Brindle JT, Antti H, Holmes E, et al. Rapid and noninvasive diagnosis of the presence and severity of coronary heart disease using 1H-NMR-based metabonomics. Nat Med 2002; 8(12): 1439–44

    Article  PubMed  CAS  Google Scholar 

  255. Wang C, Kong H, Guan Y, et al. Plasma phospholipid metabolic profiling and biomarkers of type 2 diabetes mellitus based on high-performance liquid chromatography/electrospray mass spectrometry and multivariate statistical analysis. Anal Chem 2005; 77(13): 4108–16

    Article  PubMed  CAS  Google Scholar 

  256. Dunn WB, Broadhurst D, Brown M, et al. Metabolic profiling of serum using ultra performance liquid chromatography and the LTQ-Orbitrap mass spectrometry system. J Chromatogr B Analyt Technol Biomed Life Sci 2008; 871(2): 288–98

    Article  PubMed  CAS  Google Scholar 

  257. Madhavarao CN, Arun P, Moffett JR, et al. Defective N-acetylaspartate catabolism reduces brain acetate levels and myelin lipid synthesis in Canavan’s disease. Proc Natl Acad Sci U S A 2005; 102(14): 5221–6

    Article  PubMed  CAS  Google Scholar 

  258. Rozen S, Cudkowicz ME, Bogdanov M, et al. Metabolomic analysis and signatures in motor neuron disease. Metabolomics 2005; 1(2): 101–8

    Article  PubMed  CAS  Google Scholar 

  259. Dettmer K, Aronov PA, Hammock BD. Mass spectrometry-based metabolomics. Mass Spectrom Rev 2007; 26(1): 51–78

    Article  PubMed  CAS  Google Scholar 

  260. Morgenthal K, Wienkoop S, Wolschin F, et al. Integrative profiling of metabolites and proteins: improving pattern recognition and biomarker selection for systems level approaches. Methods Mol Biol 2007; 358: 57–75

    Article  PubMed  CAS  Google Scholar 

  261. Bogdanov M, Matson WR, Wang L, et al. Metabolomic profiling to develop blood biomarkers for Parkinson’s disease. Brain 2008; 131 (Pt 2): 389–96

    Article  PubMed  Google Scholar 

  262. Ahmed SS, Santosh W, Kumar S, et al. Metabolic profiling of Parkinson’s disease: evidence of biomarker from gene expression analysis and rapid neural network detection. J Biomed Sci 2009; 16: 63

    Article  PubMed  CAS  Google Scholar 

  263. Gasser T. Genomic and proteomic biomarkers for Parkinson disease. Neurology 2009; 72(7 Suppl.): S27–31

    Article  PubMed  CAS  Google Scholar 

  264. Nollen EA, Kabakov AE, Brunsting JF, et al. Modulation of in vivo HSP70 chaperone activity by Hip and Bag-1. J Biol Chem 2001; 276(7): 4677–82

    Article  PubMed  CAS  Google Scholar 

  265. Klucken J, Shin Y, Masliah E, et al. Hsp70 reduces alpha-synuclein aggregation and toxicity. J Biol Chem 2004; 279(24): 25497–502

    Article  PubMed  CAS  Google Scholar 

  266. Goldknopf IL, Bryson JK, Strelets I, et al. Abnormal serum concentrations of proteins in Parkinson’s disease. Biochem Biophys Res Commun 2009; 389(2): 321–7

    Article  PubMed  CAS  Google Scholar 

  267. Blandini F, Fancellu R, Martignoni E, et al. Plasma homocysteine and l-dopa metabolism in patients with Parkinson disease. Clin Chem 2001; 47(6): 1102–4

    PubMed  CAS  Google Scholar 

  268. Obeid R, Schadt A, Dillmann U, et al. Methylation status and neurodegenerative markers in Parkinson disease. Clin Chem 2009; 55(10): 1852–60

    Article  PubMed  CAS  Google Scholar 

  269. Kim KS, Choi SY, Kwon HY, et al. The ceruloplasmin and hydrogen peroxide system induces alpha-synuclein aggregation in vitro. Biochimie 2002; 84(7): 625–31

    Article  PubMed  CAS  Google Scholar 

  270. Rouault TA, Cooperman S. Brain iron metabolism. Semin Pediatr Neurol 2006; 13(3): 142–8

    Article  PubMed  Google Scholar 

  271. Schaf DV, Tort AB, Fricke D, et al. S100B and NSE serum levels in patients with Parkinson’s disease. Parkinsonism Relat Disord 2005; 11(1): 39–43

    Article  PubMed  Google Scholar 

Download references

Acknowledgments

HH has received funding for research support, including investigator-initiated trials from B.R.A.H.M.S. Biotech, Novartis, Janssen-Cilag, and Glaxo-Smith-Kline. He has received travel support from EISAI and Pfizer and has worked as a consultant and speaker for B.R.A.H.M.S. Biotech, Eli Lilly, Bristol-Myers Squibb, Pfizer, Novartis, Janssen-Cilag, and Merz Pharmaceuticals. RD holds patents on immunization in AD. He has received honoraria for presentations and research grants from several companies, including Octapharma, Eisai, Lundbeck, Affiris, GSK, Pfizer, Merck, Rentschler, and CSL Behring. He has worked as a consultant for Eli Lilly, Octapharma, and Baxter. CN has no conflicts of interest that are relevant to the content of this review. No sources of funding were used to assist in the preparation of this review.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Richard Dodel.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Noelker, C., Hampel, H. & Dodel, R. Blood-Based Protein Biomarkers for Diagnosis and Classification of Neurodegenerative Diseases. Mol Diag Ther 15, 83–102 (2011). https://doi.org/10.1007/BF03256398

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF03256398

Keywords

Navigation