Skip to main content
Log in

Aqueous processing in materials science and engineering

  • Aqueous Processing
  • Featured Overview
  • Published:
JOM Aims and scope Submit manuscript

Abstract

Reviews of aqueous processing in JOM have traditionally focused on hydrometallurgical process routes. This article, however, addresses the application of aqueous processing in materials engineering and presents some promising developments that employ aqueous-based routes for the manufacture of high-tech components and specialty products. Such applications include producing metallic and ceramic powders; etching; surface modification by electroplating and electroless plating; manufacturing jewelry and intricate components by electroforming; and producing advanced ceramics, composites, and nanophase materials by sol-gel and biomimetic processing.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. G.A. Warren, “Innovations in Materials Processing: Throw Away the Black Armbands,” J. Met., 40(7) (1988), p. 20.

    Google Scholar 

  2. F.M. Doyle et al., eds., Innovations in Materials Processing using Aqueous, Colloid and Surface Chemistry (Warrendale, PA: TMS, 1989), pp. v–vi.

    Google Scholar 

  3. F.M. Doyle, “Aqueous Processing of Minerals and Materials,” JOM, 41(4) (1989), pp. 51–58.

    Article  CAS  Google Scholar 

  4. F.M. Doyle, “Aqueous Processing of Minerals and Materials,” JOM, 42(4) (1990), pp. 52–59.

    Article  CAS  Google Scholar 

  5. F.M. Doyle, “Aqueous Processing of Minerals, Metals and Materials,” JOM,43(4) (1991), pp. 43–51.

    CAS  Google Scholar 

  6. F.M. Doyle and S. Duyvesteyn, “Aqueous Processing of Minerals, Metals and Materials,” JOM, 45(4) (1993), pp. 46–54.

    CAS  Google Scholar 

  7. Metal Finishing Industry Market Survey 1992–1993, Metal Finishing Suppliers Association and National Association of Metal Finishers (March 1994).

  8. M. Murphy, Annual Reviews in February issues of Metal Finishing, 1992,1993,1994.

    Google Scholar 

  9. Surface Cleaning, Finishing, and Coatings, Metals Handbook, vol. 5,9th ed. (Materials Park, OH: ASM, 1982).

  10. S.H. Pawar, M.M. Tonape, and V.N. Shinde, “Pulse Electrodeposition of Y-Ba-Cu Alloyed Films from an Aqueous Bath,” Mater. Chem. Phys., 35 (1993), pp. 86–91.

    CAS  Google Scholar 

  11. S.H. Pawar and M.H. Pendse, “Electrodeposition of Dy-Ba-Cu Alloyed Films from Aqueous Bath,” Mater. Res. Bull., 26 (1991), pp. 641–648.

    CAS  Google Scholar 

  12. V. Krishan et al., “Electrosynthesis of Thin Films of CdZnSe: Composition Modulation and Bandgap Engineering in the Ternary System,” J. Electrochem. Soc., 139(1) (1992), pp. 23–27.

    Google Scholar 

  13. S.N. Sahu, “Aqueous Electrodeposition of InP Semiconductor Films,” J. Mater. Sci. Lett., 8 (1989), pp. 533–534.

    CAS  Google Scholar 

  14. S.N. Sanu, “Structural, Optical and Electrical Properties of First Aqueous Electrodeposited InP Semiconductor Films,” Sol. Energy Mater., 20 (1990), pp. 349–358.

    Google Scholar 

  15. W.D. Fields et al., “ Electroless Nickel Plating, ” Surface Cleaning, Finishing, and Coatings, in ref. 9, pp. 219-243.

  16. N. Feldstein, “Composite Electroless Plating,” Electroless Plating: Fundamentals and Applications, ed. G.O. Mallory and J.B. Hajdu (Orlando, FL: AESF, 1990), pp. 269–287.

    Google Scholar 

  17. J. Zahavi and S. Tamir, “Laser Induced Gold Plating on Nonmetallic Silicon Substrate,” Noble Metals Fabrications and Technology Seminar, ed. L. Gal-Or (Jerusalem, Israel: International Precious Metals Institute, 1985), pp. 169–191.

    Google Scholar 

  18. Kh. Brenner, “Application of Three-Dimensional Components formed by Lithography, Electroforming and Plastic Molding,” Appl. Optics, 32(32) (1993), pp. 6464–6469.

    CAS  Google Scholar 

  19. R. Bailey, “Looking Ahead with the Industrial Giant Xerox—An Innovator and Consistent Performer Explores New Uses for Electroforming,” Plat. Surf. Finish., 80 (12) (1993), pp. 26–28.

    Google Scholar 

  20. H.H. Law et al., “Prototype Manufacture of Miniature Nickel/Iron Alloy Magnetic Sleeves for Optical Switching,” Plat. Surf. Finish., 79(8) (1992), pp. 50–54.

    CAS  Google Scholar 

  21. J. Song, “Comparison between Precision Roughness Masterspecimens and their Electroformed Replicas,” Precis. Eng., 14(2) (1192), pp. 84–90.

    Google Scholar 

  22. R. Altkorn, “Electroformed Replication of Smooth Mirrors from Sapphire Masters,” Appl. Optics, 31(25) (1992), pp. 5153–5154.

    Google Scholar 

  23. R. Altkorn et al., “Electroformed Replication of Ultra-smooth Mirrors for X-Ray Astronomy,” Proceedings of the International Society for Optical Engineering (SPIE), 1779 (1992), pp. 88–94.

    Google Scholar 

  24. G.A. DiBari, “Electroforming,” Electroplating Engineering Handbook, 4th ed., ed. L.J. Durney (New York: Van Nostrand Reinhold, 1984), pp. 474–190.

    Google Scholar 

  25. J.W. Dini, Electrodeposition—The Materials Science of Coatings and Substrates (Park Ridge, NJ: Noyes, 1993).

    Google Scholar 

  26. M.J. Sole, “Electroforming—a Method for the Future?” Proceedings of World Gold Council International Gold Jewellery Technology, Symposium I: Casting, Gold Technology (11) (Milan, Italy: World Gold Council, Industrial Division, 1993).

    Google Scholar 

  27. D. Tench, “High-Temperature Tensile Properties of Cu-Ag Composites Prepared by Solution Precipitation of Elec-troformed Multilayered Alloys,” J. Mater. Sci., 27(19) (1992), pp. 5286–5290.

    CAS  Google Scholar 

  28. MJ. Sole, “Electroforming: Methods, Materials and Merchandise,” JOM, 46(7) (1994), pp. 29–35.

    CAS  Google Scholar 

  29. G. Stix, “Micron Machinations,” Sci. Amer., 267(11) (1992), pp. 106–117.

    Google Scholar 

  30. R. Ueda et al., “Principles of Photoetching in the Fabrication of Fine-Pitch Lead Frames,” Met. Finish., 92(1) 1994, pp. 29–31.

    CAS  Google Scholar 

  31. E. Peissker, “Production and Properties of Electrolytic Copper Powder,” Int. J. Powder Metall, 20(2) (1984), pp. 87–101.

    CAS  Google Scholar 

  32. P.W. Taubenblat, “Production of Copper Powder by Electrolysis,” Powder Metallurgy, Metals Handbook, vol. 7,9th ed. (Materials Park, OH: ASM, 1984), pp. 110–116.

    Google Scholar 

  33. P.K. Samal, “Production of Iron Powder by Electrolysis,” in Ref. 32, pp. 93–96.

    Google Scholar 

  34. O.A. Short and R.V. Weaver, U.S. patent 3,725,035 (1973).

  35. B. Meddings, “Production of Nickel Powder by Hydro-metallurgical Processing,” in Ref. 32, pp. 138–142.

    Google Scholar 

  36. B. Meddings, “Production of Cobalt and Cobalt Alloy Powders,” in Ref. 32, pp. 144–146.

    Google Scholar 

  37. B. Meddings, “Production of Composite Powders,” in Ref. 32, pp. 173–175.

    Google Scholar 

  38. O.N. Collier and S.J. Hackett, U.S. patent 4,274,877 (1981).

    Google Scholar 

  39. M. Blesa and R.J. Candal, “Powder Production for Aqueous Solutions for Ceramics Applications,” Key Eng. Mater., 58 (1991), pp. 107–128.

    CAS  Google Scholar 

  40. J. Livage, M. Henry, and J.P. Jolivet, “Inorganic Polymerization in Aqueous Solutions,” Chemical Processing of Ad-vanced Materials, ed. L.L. Hench and J.K. West (New York: Wiley, 1992), pp. 223–237.

    Google Scholar 

  41. M. Ozaki, “Preparation and Properties of Well-Defined Magnetic Particles,” Mater. Res. Bull., 24(12) (1989), pp. 35–40.

    Google Scholar 

  42. Y. Kimishima et al., “Magnetic Study on the Precipitate from the Aqueous Solutions of NiCl2.6H2O and Na2SiO3nH2O,” J. Magn. Magn. Mater., 104-107 (1992), pp. 781–782.

    Google Scholar 

  43. S.R. Sheen et al., “Synthesis and Characterization of High-Tc Y-Ba-Cu-O Superconducting Oxides by Coprecip-itation from Triethylamine-Oxalate Media,” Mater. Lett., 10(11,12) (1991), pp. 489–493.

    CAS  Google Scholar 

  44. Y.D. Yao et al., “Aqueous Coprecipitation Synthesis of YBa2Cu3O7-x Superconductors,” J. Mater. Sci. Lett., 12 (1993), pp. 232–233.

    CAS  Google Scholar 

  45. F.A. Tourinho, R. Franck, and R. Massart, “Aqueous Ferrofluids Based on Manganese and Cobalt Ferrites,” J. Mater. Sci., 25 (1990), pp. 3249–3254.

    CAS  Google Scholar 

  46. G. Guzman et al., “Synthesis of Ferroelectric Perovskites through Aqueous-Solution Techniques,” J. Mater. Sci., 28 (1993), pp. 6510–6515.

    CAS  Google Scholar 

  47. B.S. Chiou and J.N. Kuo, “Fabrication and Properties of PLZT Ceramics from Spray-Dried Aqueous Solution,” J. Electron. Mater., 20 (4) (1991), pp. 325–330.

    Google Scholar 

  48. Z.C. Chen, T. A. Ring, and J. Lemaître, “Stabilization and Processing of Aqueous BaTiO3 Suspension with Polyacrylic Acid,” J. Am. Ceram. Soc., 75 (12) (1992), 3201–3208.

    Google Scholar 

  49. M. Deveau et al., “Processing of Wollanstonite-Mullite Composites from Dense Aqueous Suspensions, Part 2” Ceramic Engineering and Science (Columbus, OH: ACerS, 1993), pp. 840–847.

    Google Scholar 

  50. Y. Hirata and T. Osaki, “Rheology and Consolidation of Aqueous Suspensions with Nanometer-Sized BaTi1-x ZrxO3 Powders,” Mater. Lett., 15 (1992), pp. 31–34.

    CAS  Google Scholar 

  51. A. Bleier et al., “Effect of Aqueous Processing Conditions on the Microstructure and Transformation Behavior in AL2O3-ZrO2(CeO2) Composites,” J. Am. Ceram. Soc., 75(10) (1992), pp. 2649–2658.

    CAS  Google Scholar 

  52. J. Cesarano III and I.A. Aksay, “Processing of Highly Concentrated Aqueous a-Alumina Suspensions Stabilized with Polyelectrolytes,” J. Am. Ceram. Soc., 71(12) (1988), pp. 1062–1067.

    CAS  Google Scholar 

  53. A. Bleier, “Secondary Minimum Interactions and Hetero-coagulation Encountered in the Aqueous Processing of Alu-mina-Zirconia Ceramic Composites,” Colloids Surf., 66 (1992), pp. 157–179.

    CAS  Google Scholar 

  54. J.W. Nicholson and J.P. Tibaldi, “Formation and Properties of Cements Prepared from Zinc Oxide and Aqueous Solutions of Zinc Nitrate,” J. Mater. Sci., 27 (1992), pp. 2420–2422.

    CAS  Google Scholar 

  55. V. DeSapio, “Advanced Structural Ceramics: Challenges to Commercialization,” ChemTech, (11) (1993), pp. 46–51.

    Google Scholar 

  56. N.V. Mandik and G.A. Krulik, “Substitution of Nonhaz-ardous for Hazardous Process Chemicals in the Printed Circuit Industry,” Met. Finish., 90(11) (1992), pp. 49–51.

    Google Scholar 

  57. J. Smith, “In-Line Semi-Aqueous Cleaning of Surface Mount PCBs,” Electron. Packag. Prod. (SuppL) (8) (1992), pp. 56–61.

    Google Scholar 

  58. R.E. Wedin, “How New Solvents Washed Away Bad Press,” Today’s Chemist at Work (September 1993), pp. 10–14.

    Google Scholar 

  59. K. Wolf, “Printed Circuit Board Defluxing: Alternatives toOzone-DepletingSubstances,” Solvent Substitution (Springfield, VA: NTIS, 1990), pp. 127–130.

    Google Scholar 

  60. S.J. Fox, “Alternatives to CFC-Solvent Based Cleaning for PCBs: Which Options are Industry Participants Choosing,” Critical Materials Processes in a Changing World, vol. 6 (Paper presented at the International SAMPE Electronics Conference, 1992), pp. 165–174.

    CAS  Google Scholar 

  61. D. Samsami, “Cleaning without CFCs: The Semi-Aque-ous Solutions,” Electron. Packag. Prod. (6) (1991), p. 62.

    Google Scholar 

  62. L. Nudo, “Heirs to the Throne,” Pollut. Eng. (June 1993), pp. 55–58.

    Google Scholar 

  63. H.A. Allcock, “Rational Design and Synthesis of New Polymeric Materials,” Science, 255 (1992), pp. 1106–1112.

    CAS  Google Scholar 

  64. F. Aldinger and H.J. Kalz, “The Importance of Chemistry in the Development of High-Perf ormance Ceramics,” Angew. Chemie, Int. Ed. Eng., 26 (5) (1987), pp. 371–381.

    Google Scholar 

  65. D.R. Ulrich, “Prospects for Sol-Gel Processes,” J. Non-Cryst. Sol., 121 (1990), pp. 465–479.

    CAS  Google Scholar 

  66. D.R. Ulrich, “Chemical Science’s Impact on Future Glass Research,” Ceram. Bull., 64(11) (1985), pp. 1444–1448.

    CAS  Google Scholar 

  67. R. Roy, “Ceramics by the Solution Sol-Gel Route,” Science, 238(12) (1987), pp. 1664–1669.

    CAS  Google Scholar 

  68. H. Dislich and P. Hinz, “History and Principles of the Sol-Gel Process, and Some New Multicomponent Oxide Coatings,” J. Non-Cryst. Solids, 48 (1982), pp. 11–16.

    CAS  Google Scholar 

  69. B.D. Fabes and D.R. Uhlmann, “Sol-Gel Processing of Glasses and Ceramics,” in Ref. 2, pp. 127–143.

    Google Scholar 

  70. R.W. Jones, Fundamental Principles of Sol-Gel Technology (London: Institute of Metals, 1989).

    Google Scholar 

  71. B.J.J. Zelinski and D.R. Uhlmann, “Gel Technology in Ceramics,” J. Phys. Chem. Solids, 45(10) (1984), pp. 1069–1090.

    CAS  Google Scholar 

  72. R.D. Shoup, “Sol-Gel Processes,” Ceramics and Glasses, ASM Engineered Materials Handbook, vol. 4 (Materials Park, OH: ASM, 1987), pp. 445–452.

    Google Scholar 

  73. P.K. Gallagher, “Chemical Synthesis,” in Ref. 72, pp. 52–64.

    Google Scholar 

  74. L.C. Klein, “Sol-Gel Process,” in Ref. 72, pp. 209–214.

    Google Scholar 

  75. J. Zaraycki, M. Prassas, and J. Phalippou, “Synthesis of Glasses from Gels: The Problem of Monolithic Gels,” J. Mater. Sci., 17 (1982), pp. 3371–3379.

    Google Scholar 

  76. A.C. Pierre, “Sol-Gel Processing of Ceramic Powders,” Ceram. Bull., 70(8) (1991), pp. 1281–1288.

    CAS  Google Scholar 

  77. D.W. Johnson, Jr., “Sol-Gel Processing of Ceramics and Glass,” Am. Ceram. Soc. Bull., 64(12) (1985), pp. 1597–1602.

    Google Scholar 

  78. H.G. Sowman, “A New Era in Ceramic Fibers via Sol-Gel Technology,” Ceram. Bull., 76(12) (1988), pp. 1911–1916.

    Google Scholar 

  79. S. Sakka, “Sol-Gel Synthesis of Glasses: Present and Future,” Am. Ceram. Soc. Bull., 64(11) (1985), pp. 1463–1466.

    CAS  Google Scholar 

  80. J.D. MacKenzie, R. Xu, and X. Yuhuan, “Ultrastructure Processing of Thin Crystalline Films,” in Ref. 40, pp. 365–378.

    Google Scholar 

  81. C.J. Brinker et al., “Sol-Gel Thin-Film Formation,” in Ref. 40, pp. 395–414.

    Google Scholar 

  82. G.R. Lee and J.A. Crayston, “Sol-Gel Processing of Transition Metal Alkoxides for Electronics,” Adv. Mater., 5(6) (1993), pp. 434–442.

    CAS  Google Scholar 

  83. J. Covino and A.C. Finlinson, “Sol-Gel-Derived Coatings for Electrical and Optical Applications,” in Ref. 40, pp. 457–466.

    Google Scholar 

  84. L.M. Sheppard, “Advances in Processing of Ferroelectric Thin Films,” Ceram. Bull., 71(1) (1992), pp. 85–95.

    Google Scholar 

  85. B.M. Melnick et al., “Process Optimization and Characterization of Device Worthy Sol-Gel Based PZT for Ferroelectric Memories,” Ferroelectrics, 112 (1990), pp. 329–351.

    CAS  Google Scholar 

  86. Anon., “Forecast ’92: Trends in Materials Processing,” Adv. Mater. Proc. (1) (1992), pp. 56–57.

    Google Scholar 

  87. R. Roy, “Solution-Sol-Gel Technology and Science: Past, Present and Future,” in Ref. 40, pp. 1023–1033.

    Google Scholar 

  88. P.D. Calvert, “Biomimetic Mineralization: Processes and Prospects,” Mater. Sci. Eng. C, 1(2) (1994), pp. 69–74.

    Google Scholar 

  89. C.-W. Li and B.E. Volcani, “Solidification in Diatom Walls,” Phil Trans. Roy. Soc. London B, 304 (1984), pp. 519–528.

    Google Scholar 

  90. F.Z. Cui et al., “Anisotropie Indentation Morphology and Hardness of Natural Ivory,” Mater. Sci. Eng. C, 1(3) (1994), in press.

    Google Scholar 

  91. J.E. Mark and P.D. Calvert, “Biomimetic, Hybrid and In-Situ Composites,” Mater. Sci. Eng. C, 1(3) (1994), in press.

    Google Scholar 

  92. A.H. Heuer et al., “Innovative Materials Processing Strategies: A Biomimetic Approach,” Science, 255 (1992), pp. 1098–1105.

    CAS  Google Scholar 

  93. C. Viney, “Processing and Microstructural Control: Les-sons from Natural Materials,” Mater. Sci. Eng. R, 10 (1993) pp. 187–236.

    CAS  Google Scholar 

  94. S.A. Wainwright et al., Mechanical Design in Organisms (London, U.K.: Arnold, 1976).

    Google Scholar 

  95. P.D. Calvert, “In Situ Composites: Polymers,” Encyclopedia of Advanced Materials, ed. D. Bloor et al. (Oxford, U.K.: Pergamon Press, 1988).

    Google Scholar 

  96. J.F.V. Vincent, Structural Biomaterials (London: Macmillan, 1982).

    Google Scholar 

  97. S. Mann, R.B. Frankel, and R.P. Blakemore, “Structure, Morphology and Crystal Growth of Bacterial Magnetite,” Nature, 310 (1985), pp. 405–407.

    Google Scholar 

  98. J. Burdon and P. Calvert, “Orientation in Biomimetic Polymer/Mineral Composites,” Mater. Res. Soc. Symp. (Hierarchically Structured Materials), vol. 255, ed. I. Aksay et al. (Pittsburgh, PA: Materials Research Society, 1992), pp. 375–383.

    Google Scholar 

  99. B.L. Zhou, “The Biomimetic Study of Composite Mate-rials,” JOM, 46(2) (1994), pp. 57–62.

    CAS  Google Scholar 

  100. B.J. Tarasevich et al, “Synthesis of Ceramic Ultrastructures Utilizing Biological Processes,” in Ref. 40, pp. 529–542.

    Google Scholar 

  101. R.P. Feynman, “There’s Plenty of Room at the Bottom: An Invitation to Enter a New Field of Physics” (Paper presented at the Annual Meeting of the American Physical Society, 29 December 1959). Reprinted in Nanotechnology Research and Perspectives, ed. B.C. Crandall and J. Lewis ( Cambridge, MA: MIT Press, 1992), pp. 347–363.

    Google Scholar 

  102. K.E. Drexler, Engines of Creation (New York: Doubleday, 1986).

    Google Scholar 

  103. K.E. Drexler, Nanosystems: Molecular Machinery, Manufacturing and Computation (New York: Wiley, 1992).

    Google Scholar 

  104. D.J. Whitehouse and K. Kawata, eds., Nanotechnology (New York: Adam Hilger, 1990).

    Google Scholar 

  105. J.W. Gardner and H.T. Hingle, eds., From Instrumentation to Nanotechnology (Reading, UK: Gordon and Breach, 1991).

    Google Scholar 

  106. J. Morse, “The Next Industrial Revolution: Molecular Nanotechnology,” Colo. Sch. Mines Quart. Rev., 93(3) (1993), pp. 1–5.

    Google Scholar 

  107. F. Hapgood, “The Really Little Engines that Might,” Technol. Rev., 96(2) (1993), pp. 31–36.

    Google Scholar 

  108. N.C. MacDonald, “Nanomechanisms: Materials, Structures and Devices” (Paper presented at the 123rd TMS Annual Meeting, San Francisco, CA, 1994).

    Google Scholar 

  109. F.A. Buot, “Mesoscopic Physics and Nanoelectronics: Nanoscience and Nanotechnology,” Phys. Rep., 234(2 & 3) (1993), pp. 73–174.

    CAS  Google Scholar 

  110. K.E. Drexler, “Large-Scale Atomic Precision” (Paper presented at 123rd TMS Annual Meeting, San Francisco, CA, 1994).

    Google Scholar 

  111. B.C. Crandall and J. Lewis, eds., Nanotechnology Research and Perspectives (Cambridge, MA: MIT Press, 1992).

    Google Scholar 

  112. M. Sarikaya and I.A. Aksay, “Synthetic and Biological Nanocomposites,” in Ref. 40, pp. 543–555.

    Google Scholar 

  113. S. Mann, “Crystallization at Inorganic/Organic Interfaces—Biominerals and Biomimetic Synthesis,” Science, 261 (5126) (1993), pp. 1286–1292.

    CAS  Google Scholar 

  114. L.L. Clements, “A Materials Engineer looks at Nanotechnology: The Science and the Science Fiction,” Submitted to Mater. Sci. Eng. C (1993).

    Google Scholar 

  115. G. Zhang et al., “Biological Synthesis of Monodisperse Derivatives of Poly(a,L-Glutamic Acid): Model Rodlike Polymers,” Macromolec, 25 (1992), pp. 3601–3603.

    CAS  Google Scholar 

  116. K.P. McGrath et al., “Genetically Directed Syntheses of New Polymeric Materials: Expression of Artificial Genes Encoding Proteins with Repeating-(AlaGly)3-ProGluGly-Elements,” J. Am. Chem. Soc., 114 (1992), pp. 727–733.

    CAS  Google Scholar 

  117. G.-M. Chow, M.A. Markowitz, and A. Singh, “Synthe-sizing Submicrometer and Nanoscale Particles via Self-Assembled Molecular Membranes,” JOM, 45(11) (1993), pp. 62–65.

    Google Scholar 

  118. G.M. Chow et al., “Metallic and Ceramic Nanostructures via Bio/Molecular Routes” (Paper presented at the 123rd TMS Annual Meeting, San Francisco, CA, 1994).

    Google Scholar 

  119. M.-P. Pileni, “Water in Oil Colloidal Droplets Used as Microreactors,” Adv. Colloid Interf. Sci., 46 (1993), pp. 139–163.

    CAS  Google Scholar 

  120. Lisiecki and M.P. Pileni, “Synthesis of Copper Metallic Clusters using Reverse Micelles,” J. Am. Chem. Soc., 115 (1993), pp. 3887–3896.

    CAS  Google Scholar 

  121. A.J.I. Ward and S.E. Friberg, “Preparing Narrow Size Distribution Particles from Amphiphilic Association Structures,” Mater. Res. Bull. (12) (1989), pp. 41–46.

    Google Scholar 

  122. S.E. Friberg and C.C. Yang, “Silica Glass from Water/Oil Microemulsions,” in Ref. 2, pp. 181–191.

    Google Scholar 

  123. D.O. Shah et al., “Formation of Ultrafine Particles using Water/Oil Microemulsions for Silver Halide, Iron Oxide and Superconducting Oxide,” in Ref. 2, pp. 193–211.

    Google Scholar 

  124. A. Henglein, “Small-Particle Research: Physicochemical Properties of Extremely Small Colloidal Metal and Semicon-ductor Particles,” Chem. Rev., 89 (1989), pp. 1861–1871.

    CAS  Google Scholar 

  125. M.G. Bawendi, M.L. Stiegerwald, and L.E. Brus, “The Quantum Mechanics of Larger Semiconductor Clusters (“Quantum Dots”),” Ann. Rev. Phys. Chem., 41 (1990), pp. 477–496.

    Google Scholar 

  126. M.L. Steigerwald and L.E. Brus, “Semiconductor Crystallites: A Class of Large Molecules,” Acc. Chem. Res., 23 (1990), pp. 183–188.

    CAS  Google Scholar 

  127. Y. Wang, “Nonlinear Optical Properties of Nanometer-Sized Semiconductor Clusters,“ Ace Chem. Res., 24 (1991), pp. 133–139.

    CAS  Google Scholar 

  128. R.D. Shull and J.J. Ritter, “Chemically Prepared Mag-netic Nanocomposites” (Paper presented at the 123rd TMS Annual Meeting, San Francisco, CA, 1994).

    Google Scholar 

  129. R.T.C. Choo and J.M. Toguri, “Mass Transfer Analysis in the Pulse Plating of Nickel Nanocrystals” (Paper presented at the 123rd TMS Annual Meeting, San Francisco, CA, 1994).

    Google Scholar 

  130. T.L. Trentler et al., “Sonochemical Synthesis of Nanom-eter-Sized Particles of Molybdenum Suicides” (Paper presented at the 123rd TMS Annual Meeting, San Francisco, CA, 1994).

    Google Scholar 

  131. R.D. Shull, “Nanometer-Scale Materials and Technol-ogy,” JOM, 45(11) (1993), pp. 60–61.

    Google Scholar 

  132. X.K. Zhao, L.D. McCormick, and J.H. Fendler, “Preparation-Dependent Rectification Behavior of Lead Sulfide Particulate Films,” Adv. Mater., 4(2) (1992), pp. 93–94.

    CAS  Google Scholar 

  133. T. Douglas and S. Mann, “Oriented Nucleation of Gypsum under Compressed Langmuir Monolayers,” Mater. Sci. Eng. C, 1(3) (1994), in press.

    Google Scholar 

  134. L.J. Sealock et al., “Chemical Processing in High-Pressure Aqueous Environments. 1. Historical Perspective and Continuing Developments,” Ind. Eng. Chem. Res., 32 (1993), pp. 1535–1541.

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Mooiman, M.B., Sole, K.C. Aqueous processing in materials science and engineering. JOM 46, 18–28 (1994). https://doi.org/10.1007/BF03220714

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF03220714

Keywords

Navigation