Skip to main content
Log in

High mtDNA haplotype diversity among introduced Swedish brown haresLepus europaeus

  • Published:
Acta Theriologica Aims and scope Submit manuscript

Abstract

The brown hareLepus europaeus Pallas, 1778 occurs naturally in central Eurasia, but has been introduced to parts of northern Europe, South- and North America, Australia and New Zealand. Brown hares were introduced to Sweden from central Europe for hunting purposes during the 19th century. We investigated how the human--mediated brown hare colonisation of Sweden is reflected in the amount of genetic variation present by assessing variation and composition of mitochondrial DNA (mtDNA) lineages among Swedish brown hares. MtDNA from a total of 40 brown hare specimens from 15 localities were analysed for Restriction Fragment Length Polymorphisms. The haplotype diversity is surprisingly high (0.893 ± 0.002) when compared to the mtDNA diversity among brown hares on the European continent as well as to other mammalian species. Admixture of haplotypes from different source populations combined with a reduced effect of random genetic drift and a relaxed selection pressure due to rapid population growth after introduction are mechanisms that are likely to account for the observed high mtDNA haplotype diversity.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Andersson A.-C., Thulin C.-G. and Tegelström H. 1999. Applicability of rabbit microsatellite primers for studies of hybridisation between an introduced and a native hare species. Hereditas 130: 309–315.

    Article  CAS  PubMed  Google Scholar 

  • Avise J. C. 2000. Phylogeography: The history and formation of species. Harward University Press, Cambridge, Massachusetts: 1–447.

    Google Scholar 

  • Avise J. C., Lansman R. A. and Shade R. O. 1979. The use of restriction endonucleases to measure mitochondrial DNA sequence relatedness in natural populations. I. Population structure and evolution in the genusPeromyscus. Genetics 92: 279–295.

    CAS  PubMed  Google Scholar 

  • Biju-Duval C., Ennafaa H., Dennebouy N., Monnerot M., Mignotte F., Soriguer R. C., El Gaaïed A., El Hili A. and Mounolou J.-C. 1991. Mitochondrial DNA evolution in Lagomorphs: Origin of systematic heteroplasmy and organization of diversity in European rabbits. Journal of Molecular Evolution 33: 92–102.

    Article  CAS  Google Scholar 

  • Boom J. D. G., Boulding E. G. and Beckenbach A.T. 1994. Mitochondrial DNA variation in introduced populations of Pacific oysters,Crassostrea gigas, in British Columbia. Canadian Journal of Fishery and Aquatic Sciences 51: 1608–1614.

    Article  Google Scholar 

  • Carson H. L. and Templeton A. R. 1984. Genetic revolutions in relation to speciation phenomena: the founding of new populations. Annual Review of Ecology and Systematics 15: 97–131.

    Article  Google Scholar 

  • Chapman R. W. 1989. Mitochondrial and nuclear gene dynamics of introduced populations ofLepomis macrochirus. Genetics 123: 399–404.

    CAS  PubMed  Google Scholar 

  • Cronin M. A., Bodkin J., Ballachey B., Estes J. and Patton J. C. 1996. Mitochondrial-DNA variation among subspecies and populations of sea otters (Enhydra lutra). Journal of Mammalogy 77: 546–557.

    Article  Google Scholar 

  • Ellegren H., Hartman G., Johansson M. and Andersson L. 1993. Major histocompatibility complex monomorphism and low levels of DNA fingerprinting variability in a reintroduced and rapidly expanding population of beavers. Proceedings of the Natural Academy of Sciences USA 90: 8150–8153.

    Article  CAS  Google Scholar 

  • Ennafaa H., Monnerot M., El Gaaïed A. and Mounolou J. C. 1987. Rabbit mitochondrial DNA: preliminary comparison between some domestic and wild animals. Genetics Selection Evolution 19: 279–288.

    Article  CAS  Google Scholar 

  • Fedorov V., Jaarola M. and Fredga K. 1996. Low mitochondrial DNA variation and recent colonization of Scandinavia by the wood lemmingMyopus shisticolor. Molecular Ecology 5: 577–581.

    Article  CAS  Google Scholar 

  • Fedorov V. B., Fredga K. and Jarrel G. H. 1999. Mitochondrial DNA variation and the evolutionary history of chromosome races of collared lemmings (Dicrostonyx) in the Eurasian arctic. Journal of Evolutionary Biology 12: 134–145.

    Article  Google Scholar 

  • Felsenstein J. 1993. PHYLIP 3.5 (Phylogeny Inference Package). Department of Genetics, University of Washington, Seattle.

    Google Scholar 

  • Frylestam B. 1990. [Learn to know the brown hare]. Schmidts Boktryckeri AB, Helsingborg: 1–47. [In Swedish]

    Google Scholar 

  • Guillemette J. G. and Lewis P. N. 1983. Detection of subnanogram quantities of DNA and RNA on native and denaturing polyacrylamide and agarose gels by silver staining. Electrophoresis 4: 92–94.

    Article  CAS  Google Scholar 

  • Hartl G. B., Suchentrunk F., Nadlinger K. and Willing R. 1993. An integrative analysis of genetic differentiation in the brown hareLepus europaeus based on morphology, allozymes and mitochondrial DNA. Acta Theriologica 38: 33–57.

    Google Scholar 

  • Hauser L., Carvalho G. R. and Pitcher T. J. 1995. Morphological and genetic differentiation of the African clupeidLimnthrissa miodon 34 years after its introduction to lake Kivu. Journal of Fish Biology 47: 127–144.

    Article  Google Scholar 

  • Jaarola M. and Tegelström H. 1995. Colonization history of Fennoscandian field voles (Microtus agrestis) revealed by mitochondrial DNA. Molecular Ecology 4: 299–310.

    Article  CAS  PubMed  Google Scholar 

  • Jones C. S., Tegelström H., Latchman D. S. and Berry R. J. 1988. An improved rapid method for mitochondrial DNA isolation suitable for use in the study of closely related populations. Biochemical Genetics 26: 83–88.

    Article  CAS  PubMed  Google Scholar 

  • Lansman R. A., Shade R. O., Shapira J. F. and Avise J. C. 1981. The use of restriction endonucleases to measure mitochondrial DNA sequence relatedness in natural populations. Journal of Molecular Evolution 17: 214–226.

    Article  CAS  PubMed  Google Scholar 

  • Lehman N. and Wayne R. K. 1991. Analysis of coyote mitochondrial DNA genotype frequencies: estimation of the effective number of alleles. Genetics 128: 405–416.

    CAS  PubMed  Google Scholar 

  • Lever C. 1994. Naturalized animals: The ecology of successfully introduced species. University Press, Cambridge: 1–350.

    Google Scholar 

  • Lönnberg E. 1905. On hybrids betweenLepus timidus L. andLepus europaeus Pall. from southern Sweden. Proceedings of the Zoological Society of London 1:278–2877.

    Google Scholar 

  • McClenaghan L. R. Jr, Berger J. and Truesdale H. D. 1990. Founding lineages and genic variability in plains Bison (Bison bison) from Badlands National Park, South Dakota. Conservation Biology 4: 285–289.

    Article  Google Scholar 

  • McElroy D., Moran P., Bermingham E. and Kornfield I. 1992. REAP: An integrated environment for the manipulation and phylogenetic analysis of restriction data. Journal of Heredity 83: 157–158.

    CAS  PubMed  Google Scholar 

  • Mignotte F., Gueride M., Champagne A. M. and Mounolou J. C. 1990. Direct repeats in the noncoding region of rabbit mitochondrial DNA: involvement in the generation of intra- and inter-individual heterogeneity. European Journal of Biochemistry 194: 561–571.

    Article  CAS  PubMed  Google Scholar 

  • Mitchell-Jones A. J., Amori G., Bogdanowicz W., Krystufek B., Reijnders P. J. H., Spitzenberger F., Stubbe M., Thissen J. B. M., Vohralik V. and Zima J. 1999. Atlas of European mammals. Academic Press, London: 1–484.

    Google Scholar 

  • Nei M. 1987. Molecular evolutionary genetics. Columbia University Press, New York: 1–512.

    Google Scholar 

  • Nei M., Maruyama T. and Chakraborty R. 1975. The bottleneck effect and genetic variability in populations. Evolution 29: 1–10.

    Article  Google Scholar 

  • Petit E., Aulagnier S., Vaiman D., Bouissou C. and Crouau-Roy B. 1997. Microsatellite variation in an introduced mouflon population. Journal of Heredity 88: 517–520.

    CAS  PubMed  Google Scholar 

  • Plante Y., Boag P. T. and White B. N. 1989. Macrogeographic variation in mitochondrial DNA of meadow voles (Microtus pennsylvanicus). Canadian Journal of Zoology 67: 158–167.

    Article  Google Scholar 

  • Ramey II R. R. 1995. Mitochondrial DNA variation, population structure, and evolution of mountain sheep in the south-western United States and Mexico. Molecular Ecology 4: 429–439.

    Article  CAS  PubMed  Google Scholar 

  • Randi E. and Apollonio M. 1988. Low biochemical variability in European fallow deer (Dama dama L.): natural bottlenecks and the effects of domestication. Heredity 61: 405–410.

    Article  PubMed  Google Scholar 

  • Riddle B. R., Honeycott R. L. and Lee P. L. 1993. Mitochondrial DNA phylogeography in northern grasshopper mice (Onychomys leucogaster) — the influence of Quaternaty climatic oscillations on population dispersion and divergence. Molecular Ecology 2: 183–193.

    Article  CAS  PubMed  Google Scholar 

  • Roff D. A. and Bentzen P. 1989. The statistical analysis of mitochondrial DNA polymorphisms: C2 and the problem of small samples. Molecular Biology and Evolution 6: 539–545.

    CAS  PubMed  Google Scholar 

  • Sjöberg G. 1996. Genetic characteristics of introduced birds and mammals. Wildlife Biology 2: 159–164.

    Google Scholar 

  • Sjögren B. 1971. [Small mammals in the North]. Zindermans, Göteborg: 1–158. [In Swedish]

    Google Scholar 

  • Suchentrunk F., Michailov C., Markov G. and Haiden A. 2000. Population genetics of Bulgarian brown hares (Lepus europaeus): Allozymic diversity at a zoogeographical crossroad. Acta Theriologica 45: 1–12.

    Google Scholar 

  • Tegelström H. 1986. Mitochondrial DNA in natural populations: An improved routine for the screening of genetic variation based on sensitive silver staining. Electrophoresis 7: 226–229.

    Article  Google Scholar 

  • Tegelström H. and Sjöberg G. 1995. Introduced Swedish Canada geese (Branta canadensis) have low levels of genetic variation as revealed by DNA fingerprinting. Journal of Evolutionary Biology 8: 195–207.

    Article  Google Scholar 

  • Thulin C.-G., Jaarola M. and Tegelström H. 1997. The occurrence of mountain hare mitochondrial DNA in wild brown hares. Molecular Ecology 6: 463–467.

    Article  CAS  PubMed  Google Scholar 

  • Upholt W. B. 1977. Estimation of DNA sequence divergence from comparisons of restriction endonuclease digests. Nucleic Acids Research 4: 1257–1265.

    Article  CAS  PubMed  Google Scholar 

  • Wade M. J., McKnight M. L. and Shaffer H. B. 1994. The effect of instructured colonization on nuclear and cytoplasmic genetic diversity. Evolution 48: 1114–1120.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Thulin, CG., Tegelström, H. High mtDNA haplotype diversity among introduced Swedish brown haresLepus europaeus . Acta Theriol 46, 375–384 (2001). https://doi.org/10.1007/BF03192444

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF03192444

Key words

Navigation