Skip to main content
Log in

Antimicrobial activity of seaweeds extracts against multiresistant pathogens

  • Applied Microbiology
  • Original Articles
  • Published:
Annals of Microbiology Aims and scope Submit manuscript

Abstract

Fourteen seaweeds collected from the intertidal zone of Southwest coast of India were tested against ten human pathogen bacteria and one human pathogen fungus using the well diffusion test in the casitone agar medium. The species used in the present study include five Chlorophyta (Bryopsis plumosa, Ulva fasciata, Acrosiphonia orientalis, Chaetomorpha antennina, Grateloupia filicina), five Rhodophyta (Hypnea pannosa, Gracilaria corticata, Centroceras clavulatum, Portieria hornemannii, Cheilosporum spectabile) and four Phaeophyta (Padina tetrastromatica, Sargassum wightii, Stocheospermum marginatum, Chnoospora bicanaliculata). Of these, seven species were determined to be highly bioactive and screened on the multiresistant pathogens. We found that drying process has eliminated the active principles in the seaweeds. In the present study, methanol:toluene (3∶1) was found to be the best solvent for extracting the antimicrobial principles from fresh algae. However, the ethanolic extract showed no antibacterial activity.Acrosiphonia orientalis showed activity against 70% of the tested organisms.Stocheospermum marginatum was the only seaweed that showed activity againstKlebsiella pneumoniae. The extract fromGracilaria corticata was highly active againstProteus mirabilis, a Gram negative pathogenic bacterium. The present findings revealed that the tested seaweeds were highly active against Gram negative bacteria than Gram positive bacteria. The antimicrobial principle from seaweed was found to be a lipophilic compound. The compound was stable over a wide range of temperature (30–60 °C). The active principles of highly active seaweedsAcrosiphonia orientalis andStocheospermum marginatum were bactericidal.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  • Awad N.E. (2000). Biologically active steroid from the green algaeUlva lactica. Phytother. Res., 14: 641–643.

    Article  CAS  PubMed  Google Scholar 

  • Ballatine D.I., Gerwick W.H., Velez S.M., Alexander E., Guevara P. (1987). Antibiotic activity of lipid soluble extracts from Caribbean marine algae. Hydrobiologia, 151: 463–469.

    Article  Google Scholar 

  • Campos-Takaki G.M., Diu M.B.S., Koening M.I., Pereira E.C. (1988). Screening of marine algae from Brazilian northeastern coast for antimicrobial activity. Bot. Mar., 31: 375–377.

    Article  Google Scholar 

  • Egorov N.S. (1957). Determination of antibiotic activity of micro-organisms by the agar block method. Antibioki, 2: 50–53.

    Google Scholar 

  • Fables C.I., Arias A., Gill-Rodriguez M.C. (1995).In vitro study of antimicrobial activity in algae (Chlorophyta, Phaeophyta, Rhodophyta) collected from the coast of Tenerife (in Spanish). Anuario del Estudios Canneries, 34: 181–192.

    Google Scholar 

  • Fenical W., Paul V.S. (1984). Antimicrobial and cytotoxic terpenoids from tropical green algae of the family Udoteaceae. In: Bird C.J., Ragan M.A., Eds, 11th International Seaweed Symposium, Dr. W. Junk Publishers, Dordrccht, Boston, Lancaster, pp. 135–140.

    Google Scholar 

  • Forbes B.A., Sahm D.F., Weissfeld A.S., Trevino E.A. (1990). Methods for testing antimicrobial effectiveness. In: Baron E.J.et al., Eds, Bailey and Scott’ Diagnostic Microbiology, Mosby Co, St Louis, Missouri, pp. 171–194.

    Google Scholar 

  • Gerwick W.H., Fenical W., Norris J.N. (1985). Chemical variation in the tropical seaweedStypopodium zonale (Dictyotaceae). Phytochemistry, 24: 1279–1283.

    Article  CAS  Google Scholar 

  • Glombitza K.W. (1979). Antibiotics from algae. In: Hoppe I.L.A., Ed., Marine Algae in Pharmaceutical Science, Waiter de Gruyter, Berlin, New York, 303f.

    Google Scholar 

  • Gonzalez del Val A., Platas G., Basillio A. (2001). Screening of antimicrobial activities in red, green, and brown algae from Gran Canaria (Canary Islands, Spain). Int. Microbiol., 4: 35–40.

    CAS  PubMed  Google Scholar 

  • Harder R. (1917). Ernahrungphysiologische untersuchunghen an Cyanophyceen, Hauptsachlich am endophytischenNostoc punctiformie. Z. Bot., 9: 145.

    Google Scholar 

  • Hay M.E. (1996). Marine chemical ecology. What’s known and what’s next? J. Exp. Mar. Biol. Ecol., 200: 103–134.

    Article  CAS  Google Scholar 

  • Konig G.M., Wright A.D., Stiche O., Angerhofer C.K., Pezzuto J.M. (1994). Biological activities of selected marine natural products. Planta Med., 60: 532–537.

    Article  CAS  PubMed  Google Scholar 

  • Lima-Filho J.V.M., Carvalho A.F.F.U., Freitas S.M. (2002). Antibacterial activity of extracts of six macroalgae from the Northeastern Brazillian coast. Brazilian J. Microbiol., 33: 311–333.

    Google Scholar 

  • Masuda M., Abe T., Sato S. (1997). Diversity of halogenated secondary metabolites in the red algaeLaurencia nipponica (Rhodomelaceae Ceramiales). J. Phycol., 33: 196–208.

    Article  CAS  Google Scholar 

  • Michanek G. (1979). Seaweed resources for pharmaceutical uses. In: Hoppe I.L.A., Ed., Marine Algae in Pharmaceutical Science, Waiter de Gruyter, Berlin, New York, pp. 203–235.

    Google Scholar 

  • Olessen P.E., Maretzki A., Almodovar L.A. (1963). An investigation of antimicrobial substances from marine algae. Bot. Mar., 6: 226–232.

    Google Scholar 

  • Paul V.J., Puglisi M.P. (2004). Chemical mediation of interactions among marine organisms. Nat. Prod. Rep., 21: 189–209.

    Article  CAS  PubMed  Google Scholar 

  • Perez R.M., Avila J.G., Perez G. (1990). Antimicrobial activity of some American algae. J. Ethnopharmacol., 29: 111–118.

    Article  CAS  PubMed  Google Scholar 

  • Rosell K.G., Srivastava L.M. (1987). Fattyacids as antimicrobial substances in brown algae. Hydrobiologia, 151: 471–475.

    Article  Google Scholar 

  • Sastry V.M.V.S., Rao G.R.K. (1994). Antibacterial substances from marine algae: successive extraction using benzene, chloroform and methanol. Bot. Mar., 37: 357–360.

    Article  CAS  Google Scholar 

  • Selvin J. (2002) Shrimp disease management using secondary metabolites isolated from marine organisms. Ph.D dissertation, Manonmaniam Sundaranar University, Tirunelveli, India.

    Google Scholar 

  • Selvin J., Lipton A.P. (2004). Biopotentials ofUlva fasciata andHypnea musciformis collected from the peninsular coast of India. J. Mar. Sci. Technol., 12: 1–6.

    Google Scholar 

  • Tuney I, Cadirci BH, Unal D, Sukatar A. (2006). Antimicrobial activities of the extracts of marine algae from the coast of Urla (Imzir, Turkey). Turk. J. Biol., 30: 171–175.

    Google Scholar 

  • Watson S.B., Cruz-Rivera E. (2003). Algal chemical ecology: an introduction to the special issue. Phycologia, 42: 319–323.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Joseph Selvin.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Shanmughapriya, S., Manilal, A., Sujith, S. et al. Antimicrobial activity of seaweeds extracts against multiresistant pathogens. Ann. Microbiol. 58, 535–541 (2008). https://doi.org/10.1007/BF03175554

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF03175554

Key words

Navigation