Skip to main content
Log in

Abstract

We construct a mathematical model for the dynamic behavior of hippocampus. The model is described by the skew product transformation in terms of chaotic dynamics and contracting dynamics. In the contracting subspace, fractal objects are generated. We show that such fractal objects are characterized by a code of a temporal sequence generated by chaotic dynamics.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. H. Fujii, H. Ito, K. Aihara, N. Ichinose and M. Tsukada, Dynamical cell assembly hypothesis — Theoretical possibility of spatio-temporal coding in the cortex. Neural Networks,9 (1996), 1303–1350.

    Article  MATH  Google Scholar 

  2. I. Tsuda, Towards an interpretation of dynamic neural activity in terms of chaotic dynamical systems. To be published in Behavioral and Brain Sciences,24, No.4, (2001).

  3. S. Karlin, Some random walks arising in learning models I. Pacific J. Math.,3 (1953), 725–756.

    MATH  MathSciNet  Google Scholar 

  4. M.F. Norman, Some convergence theorems for stochastic learning models with distance diminishing operators. J. Math. Psychol.,5 (1968), 61–101.

    Article  MATH  MathSciNet  Google Scholar 

  5. M. Barnsley, Fractals Everywhere. Academic Press, San Diego, CA., 1988.

    MATH  Google Scholar 

  6. P.C. Bressloff and J. Stark, Analysis of associative reinforcement learning in neural networks using iterated function systems. IEEE Trans. Syst., Man & Cybern.,22 (1992), 1348–1360.

    Article  MATH  MathSciNet  Google Scholar 

  7. J.B. Pollack, The induction of dynamical recognizers. Machine Learning,7 (1991), 227–252.

    Google Scholar 

  8. J.L. Elman, Finding structure in time. Cognitive Science,14 (1990), 179–211.

    Article  Google Scholar 

  9. J.L. Elman, Distributed representations, simple recurrent networks, and grammatical structure. Machine Learning,7 (1991), 195–225.

    Google Scholar 

  10. J.F. Kolen, Recurrent Networks: State machines or iterated function systems? Proceedings of 1993 Connectionist Models Summer School, Lawlence Erlbaum Associates, Inc., Hillsdale, NJ., 1994, 203–210.

    Google Scholar 

  11. O.E. Rössler, R. Wais and R. Rössler, Singular-continuous Weierstrass function attractors. Proceedings of the 2nd International Conference on Fuzzy Logic and Neural Networks (Iizuka, Japan), 1992, 909–912.

  12. I. Tsuda, A new type of self-organization associated with chaotic dynamics in neural systems. Int. J. Neural Systems,7 (1996), 451–459.

    Article  Google Scholar 

  13. I. Tsuda and A. Yamaguchi, Singular-continuous nowhere-differentiable attractors in neural systems. Neural Networks,11 (1998), 927–937.

    Article  Google Scholar 

  14. G. Buszaki, Functions for interneuronal nets in the hippocampus. Can. J. Physiol. Pharmacol.,75 (1997), 508–515.

    Article  Google Scholar 

  15. T.F. Freund and Gulyas, Inhibitory control of GABAergic interneurons in the hippocampus. Can. J. Physiol. Pharmacol.,75 (1997), 479–487.

    Article  Google Scholar 

  16. M. Frotscher and C. Leranth, Collinergic innervation of the hippocampus as revealed by colline acetyltransferase immunocytochemistry: a combined light and electron microscopic study. J. Comparative Neurol.,239 (1985), 237–246.

    Article  Google Scholar 

  17. T.F. Freund and M. Antal, GABA-containing neurons in the septum control inhibitory. Nature,336 (1988).

  18. K. Toth, T.F. Freund and R. Miles, Disinhibition of rat hippocampal pyramidal cells by GABAergic afferents from the septum. J. Physiol.,500.2 (1997), 463–474.

    Google Scholar 

  19. I. Tsuda, E. Körner and H. Shimizu, Memory dynamics in asynchronous neural networks. Progr. Theoret. Phys.,78 (1987), 51–71.

    Article  Google Scholar 

  20. I. Tsuda, Chaotic itinerancy as a dynamical basis of Hermeneutics in brain and mind. World Futures,32 (1991), 167–185.

    Article  Google Scholar 

  21. I. Tsuda, Chaotic neural networks and thesaurus. Neurocomputers and Attention I (eds. A.V. Holden and V.I. Kryukov), Manchester University Press, Manchester, 1991, 405–424.

    Google Scholar 

  22. K. Aihara, T. Takabe and M. Toyoda, Chaotic neural networks. Phys. Lett. A,144 (1990), 333–340.

    Article  MathSciNet  Google Scholar 

  23. S. Nara and P. Davis, Chaotic wandering and search in a cycle-memory neural network. Progr. Theoret. Phys.,88 (1992), 845–855.

    Article  Google Scholar 

  24. I. Tsuda, Dynamic link of memories—chaotic memory map in nonequilibrium neural networks. Neural Networks,5 (1992), 313–326.

    Article  MathSciNet  Google Scholar 

  25. K. Ikeda, K. Otsuka and K. Matsumoto, Maxwell-Bloch turbulence. Progr. Theoret. Phys., Suppl.,99 (1989), 295–324.

    Article  MathSciNet  Google Scholar 

  26. K. Kaneko, Clustering, coding, switching, hierarchical ordering, and control in network of chaotic elements. Physica D,41 (1990), 137–172.

    Article  MATH  MathSciNet  Google Scholar 

  27. M. Hata and M. Yamaguti, Takagi function and its generalization. Japan J. Appl. Math.,1 (1984), 186–199.

    Article  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

About this article

Cite this article

Tsuda, I., Kuroda, S. Cantor coding in the hippocampus. Japan J. Indust. Appl. Math. 18, 249–258 (2001). https://doi.org/10.1007/BF03168573

Download citation

  • Received:

  • Revised:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF03168573

Key words

Navigation