Skip to main content
Log in

Influence of magnetic impurities on proton spin relaxation of water in clay

  • Published:
Applied Magnetic Resonance Aims and scope Submit manuscript

Abstract

The1H nuclear magnetic spin relaxation of water in slurry of kaolin clay was investigated in the presence of magnetite (black iron oxide, Fe3O4) at 0.2 T and room temperature. The water spectra at high magnetite contents showed two different resonances, presumably from surface-associated water and free interstitial water. The difference in observed resonance frequencies increased as much as 200 ppm with increasing magnetite content. The apparent nuclear magnetic resonance intensity decreased biexponentially as a function of magnetite added. The observedT *2 values at low magnetite contents were in accordance with the predicted values from the resonance intensities and the estimated magnetic susceptibilities. TheT 1 relaxation was multiexponential in character, so a uniform penalty program was used for the analysis of distribution. At 0.2 T for1H, kaolin slurry containing less than 5.5 ppm magnetite did not differ significantly from magnetite-free clay in the longitudinal relaxation rates of water. However, higher concentrations of magnetite produced features in theT 1 distribution significantly different from those of magnetite-free clay. TheT 2 could be approximated by monoexponential relaxation, probably because the fast-decaying components relaxed before they could be recorded. The apparent transverse relaxation ratesR 2 increased linearly as a function of magnetite content. On the basis of the comparison of spin-echo and Carr-Purcell-Meiboom-Gill data, an empirical relation was derived to describe the signal loss due to diffusion. It can be expressed by a power function of magnetite amount, which is multiplied by the sum of volume-dependent and volume-independent terms.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Flannery B.P., Deckman H.W., Roberge W.G., D’Amico K.L.: Science237, 1439–1443 (1987); Monteiro P.J., Pichot C., Belkebir K. in: Materials Science of Concrete (Skalny V.Y., Mindess S., eds.), pp. 537–572, Westerville: American Ceramic Society, 1998; Garboczi E.J.: Cem. Concr. Res.32, 1621–1638 (2002); Otani J., Yuzo O.: X-Ray CT for Geomaterials: Soils, Concrete, Rocks. London: Taylor & Francis 2004.

    Article  ADS  Google Scholar 

  2. Teresa N., Randall E.W., Samoilenko A.A., Bodart P., Feio G.: J. Phys. D29, 805–808 (1996); Young J.J., Szomolanyi P., Bremner W.T., Balcom B.J.: Cem. Concr. Res.34, 1459–1466 (2004); Nestle N.: Solid State Nucl. Magn. Reson.25, 80–83 (2004)

    Article  ADS  Google Scholar 

  3. Tanaka M., Nagashima K., Kamei T., Ando Y., Tujioka T.: J. Jpn. Soc. Civ. Eng.778, 173–181 (2004)

    Google Scholar 

  4. Bryar T.R., Daughney C.J., Knight R.J.: J. Magn. Reson.142 74–85 (2000)

    Article  ADS  Google Scholar 

  5. Valckenborg R.M.E., Pel L., Kopinga K.: J. Magn. Reson.151, 291–297 (2001)

    Article  ADS  Google Scholar 

  6. Haines W.B.: J. Agr. Sci.13, 296–310 (1923)

    Article  Google Scholar 

  7. Pople J.A., Schneider W.G., Bernstein H.J.: High-Resolution Nuclear Magnetic Resonance. New York: McGraw-Hill 1959.

    Google Scholar 

  8. Poulis J.A., Massen C.H., Weijts A.G.L.M.: Proc. Phys. Soc.82, 611–613 (1963)

    Article  Google Scholar 

  9. Hwang J.Y.: J. Miner. Mater. Charact. Eng.1, 131–140 (2002)

    Google Scholar 

  10. Horak D., Lednicky F., Petrovsky E., Kapicka A.: Macromol. Mater. Eng.289, 341–348 (2004)

    Article  Google Scholar 

  11. Hopkins J.A., Wehrli F.W.: Magn. Reson. Med.37, 494–500 (1997)

    Article  Google Scholar 

  12. Borgia G.C., Brown R.J.S., Fantazzini P.: J. Magn. Reson.132, 65–77 (1998); Fantazzini P., Brown R.J.S., Borgia G.C.: Magn. Reson. Imaging21, 227–234 (2003)

    Article  ADS  Google Scholar 

  13. Coates G.R., Xiao L., Prammer M.G.: NMR Logging Principles and Applications, Houston: Halliburton Energy Services Publication, distributed by Gulf Publishing Company 1999.

    Google Scholar 

  14. Penumadu D., Dean J.: Can. Geotech. J.37, 393–405 (2000)

    Article  Google Scholar 

  15. Carr H.Y., Purcell E.M.: Phys. Rev.94, 630–638 (1954)

    Article  ADS  Google Scholar 

  16. de Swiet T.M., Sen P.N.: J. Chem. Phys.100, 5597–5604 (1994)

    Article  ADS  Google Scholar 

  17. Mills R.: J. Phys. Chem.77, 685–689 (1973)

    Article  Google Scholar 

  18. Hürlimann M.: J. Magn. Reson.131, 232–240 (1998)

    Article  ADS  Google Scholar 

  19. Brownstein K.R., Tarr C.E.: J. Magn. Reson.26, 17–24 (1977); Brownstein K.R., Tarr C.E.: Phys. Rev. A19, 2446–2453 (1979)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to K. Nagashima.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Nagashima, K. Influence of magnetic impurities on proton spin relaxation of water in clay. Appl. Magn. Reson. 30, 55–73 (2006). https://doi.org/10.1007/BF03166982

Download citation

  • Received:

  • Revised:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF03166982

Keywords

Navigation