Skip to main content
Log in

Brain iron deficiency and excess; cognitive impairment and neurodegenration with involvement of striatum and hippocampus

  • Published:
Neurotoxicity Research Aims and scope Submit manuscript

Abstract

While iron deficiency is not perceived as a life threatening disorder, it is the most prevalent nutritional abnormality in the world, and a better understanding of modes and sites of action, can help devise better treatment programs for those who suffer from it. Nowhere is this more important than in infants and children that make up the bulk of iron deficiency in society. Although the effects of iron deficiency have been extensively studied in systemic organs, until very recently little attention was paid to its effects on brain function. The studies of Oski at Johns Hopkin Medical School in 1974, demonstrating the impairment of learning in young school children with iron deficiency, prompted us to study its relevance to brain biochemistry and function in an animal model of iron deficiency. Indeed, rats made iron deficient have lowered brain iron and impaired behaviours including learning. This can become irreversible especially in newborns, even after long-term iron supplementation. We have shown that in this condition it is the brain striatal dopaminergic-opiate system which becomes defective, resulting in alterations in circadian behaviours, cognitive impairment and neurochemical changes closely associated with them. More recently we have extended these studies and have established that cognitive impairment may be closely associated with neuroanatomical damage and zinc metabolism in the hippocampus due to iron deficiency, and which may result from abnormal cholinergic function. The hippocampus is the focus of many studies today, since this brain structure has high zinc concentration and is highly involved in many forms of cognitive deficits as a consequence of cholinergic deficiency and has achieved prominence because of dementia in ageing and Alzheimer’s disease. Thus, it is now apparent that cognitive impairment may not be attributed to a single neurotransmitter, but rather, alterations and interactions of several systems in different brain regions. In animal models of iron deficiency it is apparent that dopaminergic interaction with the opiate system and cholinergic neurotransmission may be defective.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Adhami VM, R Husain, R Husain and PK Seth (1996) Influence of iron deficiency and lead treatment on behavior and cerebellar and hippocampal polyamine levels in neonalt rats.Neur. Res. 21(8), 915–922.

    Article  CAS  Google Scholar 

  • Angulo JA (1992) Involvement of dopamine D1 and D2 receptors in the regulation of proenkephalin mRNA abundance in the striatum and accumbens of the rat brain.J. Neurochem. 58, 1104–1109.

    Article  PubMed  CAS  Google Scholar 

  • Bayer SA (1985) Hippocampal region, In:The Rat Nervous System (Paxinos G, Ed.) (Academic Press:Australia), pp 335–352.

    Google Scholar 

  • Ben-Shachar D, R Ashkenazi and MBH Youdim (1986) Long term consequences of early iron-deficiency on dopaminergic neurotransmission.Int. J. Dev. Neurosci. 4, 81–88.

    Article  PubMed  CAS  Google Scholar 

  • Ben-Shachar D, S Yehuda, JPM Finberg, I Spanier and MBH Youdim (1988) Selective alteration in blood brain barrier and insulin transport in iron-deficient rat.J. Neurochem. 50, 1434–1437.

    Article  PubMed  CAS  Google Scholar 

  • Bliss TV and GL Collingridge (1993) A synaptic model of memory: long-term potentiation in the hippocampus.Nature 361(6407), 31–39.

    Article  PubMed  CAS  Google Scholar 

  • Chua AC and EH Morgan (1996) Effect of iron deficiency and iron overload on manganese uptake and deposition in the brain and other organs of the rat.Biol. Trace Element Res. 55, 39–54.

    Article  CAS  Google Scholar 

  • Connor JR and SL Menzies (1996) Relationship of iron to oligodendrocytes and myelination.Glia 17, 83–93.

    Article  PubMed  CAS  Google Scholar 

  • Connor JR, TM Phillips, MR Lakshman, KD Baron, RE Fine and CK Csiza (1987) Regional variation in the levels of transferrin in the CNS of normal and myelin-deficient rats.J. Neurochem. 49(5), 1523–1529.

    Article  PubMed  CAS  Google Scholar 

  • Connor JR, KL Boeshore, SA Benkovic and SL Menzies (1994) Isoforms of ferritin have aspecific cellular distribution in the brain.J. Neurosci. Res. 37, 461–465.

    Article  PubMed  CAS  Google Scholar 

  • Connor JR, G Pavlick, D Karli, SL Menzies and C Palmer (1995) A histochemical study of iron-positive cells in the developing rat brain.J. Comp. Neurol. 355, 111–123.

    Article  PubMed  CAS  Google Scholar 

  • Dallman PR and RA Spirito (1977) Brain iron in the rat: extremely slow turnover in normal rats may explain the long-lasting effects of early iron deficiency.J. Nutr. 107, 1075–1081.

    PubMed  CAS  Google Scholar 

  • Dallman PR, MA Siimes and EC Manies (1975) Brain iron: persistent deficiency following short-term iron deprivation in the young rat.Br. J. Haematol. 31, 209–215.

    Article  PubMed  CAS  Google Scholar 

  • de los Monteros AE, RA Korsak, T Tran, D Vu, J de Vellis and J Edmond (2000) Dietary iron and the integrity of the developing rat brain: a study with the artificially-reared rat pup.Cell. Mol. Biol. (Noisy-le-grand) 46, 501–515.

    Google Scholar 

  • Dhur A, P Galan and S Hercberg (1990) Effect of decreased food consumption during iron deficiency upon growth rate and iron status indicators in the rat.Ann. Nutr. Metab. 34, 280–287.

    Article  PubMed  CAS  Google Scholar 

  • Dobbing J (1990a)Brain Behavior and Iron in the Infant Diet (Springer-Verlag:Berlin).

    Google Scholar 

  • Dobbing J (1990b) Vulnerable periods in developing brain, In:Brain Behavior and Iron in the Infant Diet (Dobbing J, Ed.) (Springer-Verlag:Berlin), pp 1–26.

    Google Scholar 

  • Durham RA, JD Johnson, KE Moore and KJ Lookingland (1996) Evidence that D2 receptor-mediated activation of hypothalamic tuberoinfundibular dopaminergic neurons in the male rat occurs via inhibition of tonically active afferent dynorphinergic neurons.Brain Res. 2, 732, 113–120.

    Google Scholar 

  • Dwork AJ (1995) Effects of diet and development upon the uptake and distribution of cerebral iron.J. Neurol. Sci. 134 (Suppl.), 45–51.

    Article  PubMed  CAS  Google Scholar 

  • Dwork AJ, EA Schon and J Herbert (1988) Non-identical distribution of transferin and ferric iron in human brain.Neuroscience 27, 333–345.

    Article  PubMed  CAS  Google Scholar 

  • Dwork AJ, G Lawler, PA Zybert, M Durkin, M Osman, N Wilson and AI Barkai (1990) An autoradiographic study of the uptake and distribution of iron by the brain of the young rat.Brain Res. 518, 31–39.

    Article  PubMed  CAS  Google Scholar 

  • Eisenstein RS and KP Blemings (1998) Iron regulatory proteins, iron responsive elements and iron homeostasis.J. Nutr. 128, 2295–2298.

    PubMed  CAS  Google Scholar 

  • Erikson KM, DJ Pinero, JR Connor and JL Beard (1997) Regional brain iron, ferritin and transferrin concentrations during iron deficiency and iron repletion in developing rats.J. Nutr. 127, 2030–2038.

    PubMed  CAS  Google Scholar 

  • Essatara MB, AS Levine, JE Morley and CJ McClain (1984) Zinc deficiency and anorexia in rats: normal feeding patterns and stress induced feeding.Physiol. Behav. 32, 469–474.

    Article  PubMed  CAS  Google Scholar 

  • Felt BT and B Lozoff (1996) Brain iron and behavior of rats are not normalized by treatment of iron deficiency anemia during early development.J. Nutr. 126, 693–701.

    PubMed  CAS  Google Scholar 

  • Frederickson CJ, MA Klitenick, WI Manton and JB Kirkpatrick (1983) Cytoarchitectonic distribution of zinc in the hippocampus of man and the rat.Brain Res. 273, 335–339.

    Article  PubMed  CAS  Google Scholar 

  • Georgieff MK, CD Petry, JD Wobken and CE Oyer (1996) Liver and brain iron deficiency in newborn infants with bilateral renal agenesis (Potter’s syndrome).Pediatr. Pathol. Lab. Med. 16, 509–519.

    PubMed  CAS  Google Scholar 

  • Gosnell BA, AS Levine and JE Morley (1986) The stimulation of food intake by selective agonists of mu, kappa and delta opioid receptors.Life Sci. 38(12), 1081–1088.

    Article  PubMed  CAS  Google Scholar 

  • Guesry P (1998) The role of nutrition in brain development.Prev. Med. 27, 189–194.

    Article  PubMed  CAS  Google Scholar 

  • Gulya K, GL Kovacs and P Kasa (1991) Partial depletion of endogenous zinc level by (DPen2, D-Pen5)enkephalin in the rat brain.Life Sci. 48(12), PL57-PL62.

    Article  PubMed  CAS  Google Scholar 

  • Haile DJ (1999) Regulation of genes of iron metabolism by the iron-response proteins.Am. J. Med. Sci. 318, 230–240.

    Article  PubMed  CAS  Google Scholar 

  • Hallgren B and P Sourander (1958) The effect of age on the non-haem iron in the human brain.J. Neurochem. 3, 41–51.

    Article  PubMed  CAS  Google Scholar 

  • Han J, JR Day, K Thomson, JR Connor and JL Beard (2000) Iron deficiency alters H- and L-ferritin expression in rat brain.Cell. Mol. Biol. (Noisy-le-grand) 46, 517–528.

    CAS  Google Scholar 

  • Hansen TM, H Nielsen, N Bernth and T Moos (1999) Expression of ferritin protein and subunit mRNAs in normal and iron deficient rat brain.Mol. Brain Res. 65, 186–197.

    Article  PubMed  CAS  Google Scholar 

  • Hegg CC and SA Thayer (1999) Monocytic cells secrete factors that evoke excitatory synaptic activity in rat hippocampal cultures.Eur. J. Pharmacol. 385(2-3), 231–237.

    Article  PubMed  CAS  Google Scholar 

  • Hill JM (1988) The distribution of iron in the brain, In:Brain Iron: Neurochemistry and Behavioural Aspects (Youdim MBH, Ed.) (Taylor & Francis:London), pp 1–24.

    Google Scholar 

  • Howell GA, MG Welch and CJ Frederickson (1984) Stimulation-induced uptake and release of zinc in hippocampal slices.Nature (London) 308, 736–738.

    Article  CAS  Google Scholar 

  • Huidobro-Toro JP and E Leong Way (1983) Opiates, In:Preclinical Psychopharmacology, Part 1 (Grahame-Smith DG & PJ Cowen, Eds.) (Excerpta Medica:Amsterdam), pp 300–343.

    Google Scholar 

  • Huidobro-Toro JP and E Leong Way (1985) Opiates. In:Preclinical Psychopharmacology, Part 1 (Grahame-Smith DG & PJ Cowen, Eds.) (Excerpta Medica:Amsterdam), pp 283–343.

    Google Scholar 

  • KanekoY, T Kitamoto, J Tateishi and K Yamaguchi (1989) Ferritin immunohistochemistry as a marker for microglia.Acta Neuropathol. (Berl.) 79(2), 129–136.

    Article  CAS  Google Scholar 

  • Kaur C and EA Ling (1995) Transient expression of transferrin receptors and localisation of iron in amoeboid microglia in postnatal rats.J. Anat. 186 (Pt. 1), 165–173.

    PubMed  CAS  Google Scholar 

  • Li D (1998) Effect of iron deficiency on iron distribution and gamma-aminobutyric acid (GABA) metabolism in young rat brain tissues.Hokkaido Igaku Zasshi — Hokkaido J. Med. Sci. 73(3), 215–225.

    CAS  Google Scholar 

  • Lozoff B (1988) Behavioral alteration in iron deficiency.Adv. Pediatr. 6, 331–359.

    Google Scholar 

  • Lozoff B and GM Brittenham (1986) Behavioral aspects of iron deficiency.Prog. Hematol. 14, 23–53.

    PubMed  CAS  Google Scholar 

  • Lozoff B, E Jimenez and AW Wolf (1991) Long-term developmental outcome of infants with iron deficiency.New Engl. J. Med. 325, 687–694.

    PubMed  CAS  Google Scholar 

  • Lozoff B, AW Wolf and E Jimenez (1996) Iron-deficiency anemia and infant development: effects of extended oral iron therapy.J. Pediatr. 129, 382–389.

    Article  PubMed  CAS  Google Scholar 

  • Moos T, PS Oates and EH Morgan (1998) Expression of the neuronal transferrin receptor is age dependent and susceptible to iron deficiency.J. Comp. Neur. 398, 420–430.

    Article  PubMed  CAS  Google Scholar 

  • Morris BJ and HM Johnston (1995) A role for hippocampal opioids in long-term functional plasticity.Trends Neurosci. 18, 350–355.

    Article  PubMed  CAS  Google Scholar 

  • Morris BJ, V Hollt and A Herz (1988) Dopaminergic regulation of striatal proenkephalin mRNA and prodynorphin mRNA contrasting effects of D1 and D2 antagonists.Neuroscience 25(2), 525–532.

    Article  PubMed  CAS  Google Scholar 

  • Nakajima K and S Kohsaka (1993) Functional roles of microglia in the brain.Neurosci. Res. 17, 187–203.

    Article  PubMed  CAS  Google Scholar 

  • Parks YA and BA Wharton (1989) Iron deficiency and the brain.Acta Paediatr. Scand. 361, 71–77.

    CAS  Google Scholar 

  • Pinero DJ, NQ Li, JR Connor and JL Beard (2000) Variations in dietary iron alter brain iron metabolism in developing rats.J. Nutr. 130 (2), 254–263.

    PubMed  CAS  Google Scholar 

  • Pollitt E and RL Leibel (1982)Iron-Deficiency, Brain Biochemistry and Behavior (Raven Press:New York).

    Google Scholar 

  • Pollitt E, J Haas and DA Levitsky (1989)International Conference of Iron Deficiency and Behavioural Development.Am. J. Clin. Nutr. 50, 565–705.

    Google Scholar 

  • Rao R, M de Ungria, D Sullivan, P Wu, JD Wobken, CA Nelson and MK Georgieff (1999) Perinatal brain iron deficiency increases the vulnerablitity of rat hippocampus to hypoxic ischemic insult.J. Nutr. 129, 199–206.

    PubMed  CAS  Google Scholar 

  • Riederer P, E Sofic, WD Rouch and MBH Youdim (1989) Transition metal, ferritin, glutathione and ascorbic acid in Parkinsonian brains.J. Neurochem. 52, 515–521.

    Article  PubMed  CAS  Google Scholar 

  • Shoham S and MBH Youdim (2000) Iron involvement in neural damage and microgliosis in models of neurodegenerative diseases.Cell. Mol. Biol. (Noisy-le-grand) 46, 743–760.

    CAS  Google Scholar 

  • Shoham S and MBH Youdim (2002) The effects of iron deficiency and iron and zinc supplementation on rat hippocampus ferritin.J. Neural Transm. 109, 1241–1256.

    Article  PubMed  CAS  Google Scholar 

  • Shoham S, Glinka Y, Tanne Z, Youdim MBH (1996) Brain iron: function and dysfunction in relation to cognitive processes. In:Iron Nutrition in Health and Disease (Hallberg L and NG Asp Eds.) (John Libbey & Co.:London), pp 205–218.

    Google Scholar 

  • Shukla A, KN Agrawal and GS Shukla (1989) Effect of latent iron deficiency on metal levels of rat brain regions.Biol. Trace Elem. Res. 22, 141–152.

    Article  PubMed  CAS  Google Scholar 

  • Spatz H (1992) Uber des eisennachewis in gehrin besonders in zentren des extra-pyramidal motorrischen systems. 2 gesNeural Psychiatr. 77, 261–390.

    Google Scholar 

  • Stengaard-Pedersen K, K Fredens and LI Larson (1981) Enkephalin and zinc in the mossy fiber system.Brain Res. 212, 230–233.

    Article  PubMed  CAS  Google Scholar 

  • Tang FE, E Costa and JP Schartz (1983) Increase of proenkephalin mRNA and enkephalin content of rat striatum after daily injection of haloperidol for 2 to 3 weeks.Proc. Natl. Acad. Sci. USA 80, 3841–3846.

    Article  PubMed  CAS  Google Scholar 

  • Taylor EM, A Crowe and EH Morgan (1991) Transferrin and iron uptake by the brain: effects of altered iron status.J. Neurochem. 57(5), 1584–1592.

    Article  PubMed  CAS  Google Scholar 

  • Tikka TM and JE Koistinaho (2001) Minocycline provides neuroprotection against N-methyl-D-aspartate neurotoxicity by inhibiting microglia.J. Immunol. 166 (12), 7527–7533.

    PubMed  CAS  Google Scholar 

  • Walter T, I De Andraca, P Chadud and CG Perales (1989) Iron deficiency anemia: adverse effects on infant psychomotor development.Pediatrics 84, 7–17.

    PubMed  CAS  Google Scholar 

  • Werkman S, L Shifman and T Shelly (1964) Psychosocial correlates of iron deficiency in early childhood.Psychosom. Med. 26, 125–134.

    PubMed  CAS  Google Scholar 

  • Webb TF and FA Oski (1973) Iron deficiency anemia and scholastic achievements: behavioral stability and perceptual sensitivity to adolescents.J. Pediatr. 82, 827–830.

    Article  PubMed  CAS  Google Scholar 

  • Xie X and TG Smart (1994) Modulation of long-term potentiation in rat hippocampal pyramidal neurons by zinc.Pflugers Arch. 427, 481–486.

    Article  PubMed  CAS  Google Scholar 

  • Yehuda S (1990) Neurochemical bases of behavioral effects of brain iron-deficiency in animals, In:Brain Behavior and Iron in the Infant Diet (Dobbing J, Ed.) (Springer-Verlag: Berlin), pp 63–82.

    Google Scholar 

  • Yehuda S and MBH Youdim (1984) The increased opiate action of ß-endorphin in iron-deficient rats: the possible involvement of dopamine.Eur. J. Pharmacol. 105, 245–251.

    Article  Google Scholar 

  • Yehuda S and MBH Youdim (1989) Brain iron: a lesson from animal models.Am. J. Clin. Nutr. 50 (Suppl.), 618–625.

    PubMed  CAS  Google Scholar 

  • Yehuda S, MBH Youdim and M Mostofsky (1986) Brain iron deficiency causes reduced learning capacity in rats.Pharmacol. Biochem. Behav. 25, 141–145.

    Article  PubMed  CAS  Google Scholar 

  • Yehuda S, MBH Youdim and N Zamir (1988) Iron-deficiency induces increased brain metenkaphalin and pain threshold in response to opiate peptides.Br. J. Pharmacol. 87(Suppl.).

  • Yokoi K, M Kimura and Y Itokawa (1991) Effect of dietary iron deficiency on mineral levels in tissues of rats.Biol. Trace Elem. Res. 29, 257–265.

    Article  PubMed  CAS  Google Scholar 

  • Yoshida T, M Tanaka, A Sotomatsu and S Hirai (1995) Activated microglia cause superoxide-mediated release of iron from ferritin.Neurosci. Lett. 190 (1), 21–24.

    Article  PubMed  CAS  Google Scholar 

  • Youdim MBH (1990) Neuropharmacological and neurochemical aspects of iron deficiency, In:Brain Behavior and Iron in the Infant Diet (Dobbing J, Ed.) (Springer-Verlag:Berlin), pp 83–106.

    Google Scholar 

  • Youdim MBH and AR Green (1977) Biogenic monoamine metabolism and functional activity in iron-deficient rats: behavioural correlates.Ciba Found. Symp. 51, 201–223.

    CAS  Google Scholar 

  • Youdim MBH and P Riederer (1997) Understanding Parkinson’s Disease.Sci. Am. 257, 59–64.

    Google Scholar 

  • Youdim MBH and P Riederer (1999) Iron in the brain, normal and pathological, In:Encyclopedia of Neuroscience (Adelman G and BH Smith, Eds.) (Elsevier:Amsterdam), pp 983–987.

    Google Scholar 

  • Youdim MBH and S Yehuda (2000) The neurochemical basis of cognitive deficits induced by brain iron deficiency: involvement of dopamine-opiate system.Cell. Mol. Biol. 46, 491–500.

    PubMed  CAS  Google Scholar 

  • Youdim MBH, MA Sills, WE Neydron, GJ Creed and DH Jacobowitz (1986) Iron deficiency alters discrete proteins in rat caudate nucleus and nucleus accumbens.J. Neurochem. 47, 794–799.

    Article  PubMed  CAS  Google Scholar 

  • Youdim MBH, D Ben-Shachar and S Yehuda (1989) Putative biological mechanisms of the effect of iron-deficiency on brain biochemistry and behavior.Am. J. Clin. Nutr. 50, 607–617.

    PubMed  CAS  Google Scholar 

  • Youdim MBH, N Zamir and S Yehuda (2000) Antinociception in iron-deficient rats related to subsensitivety of dopamine D2 receptor induced increase of opiate peptides.Nutr. Neurosci. 3, 357–365.

    CAS  Google Scholar 

  • Zecca L, MB Youdim, P Riederer, JR Connor and RR Crichton (2004) Iron, brain ageing and neurodegenerative disorders.Nat. Rev. Neurosci. 5(11), 863–873.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Moussa B. H. Youdim.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Youdim, M.B.H. Brain iron deficiency and excess; cognitive impairment and neurodegenration with involvement of striatum and hippocampus. neurotox res 14, 45–56 (2008). https://doi.org/10.1007/BF03033574

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF03033574

Keywords

Navigation