Skip to main content
Log in

Effect of stress on prefrontal cortex function

  • Published:
Neurotoxicity Research Aims and scope Submit manuscript

Abstract

Stress is the major epigenetic factor that contributes to the etiology, pathophysiology, and treatment out-come of most psychiatric disorders. Understanding the mechanisms by which stress contributes to these processes can have important implications for improving therapeutic outcome. Considering that a dysfunctional prefrontal cortex has been implicated in many psychiatric disorders, such as schizophrenia and mood disorders, delineating mechanisms by which stress affects prefrontal cortex (PFC) function is critical to our understanding of the role of stress in influencing the disease process. This paper will review recent mechanistic information about the effects of stress on dopamine and glutamate neurotransmission in the PFC.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  • Abercrombie ED, KA Keefe, DS DiFrischia and MJ Zigmond (1989) Differential effect of stress onin vivo dopamine release in striatum, nucleus accumbens, and medial frontal cortex.J. Neurochem. 52, 1655–1658.

    Article  PubMed  CAS  Google Scholar 

  • Ahmed SH and GF Koob (1997) Cocaine- but not food- seeking behavior is reinstated by stress after extinction.Psychopharmacology 132, 289–295.

    Article  PubMed  CAS  Google Scholar 

  • Axelrod J and TD Reisine (1984) Stress hormones: their interaction and regulation.Science 224, 452–459.

    Article  PubMed  CAS  Google Scholar 

  • Bagley J and B Moghaddam (1997) Temporal dynamics of gluta-mate efflux in the prefrontal cortex and in the hippocampus following repeated stress: effects of pretreatment with saline or diazepam.Neuroscience 77, 65–73.

    Article  PubMed  CAS  Google Scholar 

  • Berger B, AM Thierry, JP Tassin and MA Moyne (1976) Dopaminergic innervation of the rat prefrontal cortex: a fluorescence histochemical study.Brain Res. 106, 133–145.

    Article  PubMed  CAS  Google Scholar 

  • Breiter HC, RL Gollub, RM Weisskoff, DN Kennedy, N Makris, JD Berke, JM Goodman, HL Kantor, DR Gastfriend, JP Riorden, RT Mathew, BR Rosen and SE Hyman (1997) Acute effects of cocaine on human brain activity and emotion.Neuron 19, 591–611.

    Article  PubMed  CAS  Google Scholar 

  • Cabib S and S Puglisi-Allegra (1996) Different effects of repeated stressful experiences on mesocortical and mesolimbic dopamine metabolism.Neuroscience 73, 375–380.

    Article  PubMed  CAS  Google Scholar 

  • Carlsson A (1978) Antipsychotic drugs, neurotransmitters, and schizophrenia.Am. J. Psychiatry 135, 164–173.

    CAS  Google Scholar 

  • Carr D and S Sesack (2000) Projections from the rat prefrontal cortex to the ventral tegmental area: target specificity in the synap-tic associations with mesoaccumbens and mesocortical neurons.J. Neurosci. 20, 3864–3873.

    PubMed  CAS  Google Scholar 

  • Chergui K, P Charlety, H Akaoka, C Saunier, J-L Brunet, M Buda, T Svensson and G Chouvet (1993) Tonic activation of NMDA receptors causes spontaneous burst discharge of rat midbrain dopamine neuronsin vivo.Eur. J. Neurosci. 5, 137–144.

    Article  PubMed  CAS  Google Scholar 

  • Childress AR and CP O’Brien (2000) Dopamine receptor partial agonists could address the duality of cocaine craving.Trends Pharmacol. Sci. 21, 6–9.

    Article  PubMed  CAS  Google Scholar 

  • Conde F, E Maire-Lepoivre and F Audinat, E Crepel (1995) Afferent connections of the medial frontal cortex of the rat. II. Cortical and subcortical afferents.J. Comp. Neurol. 352, 567–593.

    Article  PubMed  CAS  Google Scholar 

  • Cuadra G, A Zurita, C Lacerra and V Molina (1999) Chronic stress sensitizes frontal cortex dopamine release in response to a subsequent novel stressor: reversal by naloxone.Brain Res. Bull. 48, 303–308.

    Article  PubMed  CAS  Google Scholar 

  • Di Chiara G, P Loddo and G Tanda (1999) Reciprocal changes in prefrontal and limbic dopamine responsiveness to aversive and rewarding stimuli after chronic mild stress: implications for the psychobiology of depression.Biol. Psychiatry 46, 1624–1633.

    Article  PubMed  Google Scholar 

  • Divac I, A Kosmal, A Bjorklund and O Lindvall (1978) Subcortical projections to the prefrontal cortex in the rat as revealed by the horseradish peroxidase technique.Neuroscience 3, 785–796.

    Article  PubMed  CAS  Google Scholar 

  • Domesick V (1981) Further observation on the anatomy of the nucleus accumbens and caudatoputamen in the rat: similarities and contrasts, inNeurobiology of the Nucleus Accumbens (Chronister RB and JF DeFrance, Eds.) (Haer Inst. Electrophysiological Res., Brunswick, ME), pp 7–39.

    Google Scholar 

  • Drevets WC (2001) Neuroimaging and neuropathological studies of depression: implications for the cognitive-emotional features of mood disorders.Curr. Opin. Neurobiol. 11, 240–249.

    Article  PubMed  CAS  Google Scholar 

  • Enrico P, M Bouma and J de Vries (1998) The role of afferents to the ventral tegmental area in the handling stress-induced in the release of dopamine in the medial prefrontal cortex: a dual-probe microdialysis study in the rat brain.Brain Res. 779, 205–213.

    Article  PubMed  CAS  Google Scholar 

  • Erb S, Y Shaham and J Stewart (1996) Stress reinstates cocaine-seeking behavior after prolonged extinction and a drug-free period.Psychopharmacology 128, 408–412.

    Article  PubMed  CAS  Google Scholar 

  • Feenstra M, M Botterblom and JF Uum (1998) Local activation of metabolic glutamate receptors inhibits the handling-induced increased release of dopamine in the nucleus accumbens but not that of dopamine or noradrenaline in the prefrontal cortex: comparison with inhibition of ionotropic receptors.J. Neurochem. 70, 1104–1113.

    PubMed  CAS  Google Scholar 

  • Feenstra MG, M Vogel, MH Botterblom, RN Joosten and JP de Bruin (2001) Dopamine and noradrenaline efflux in the rat pre-frontal cortex after classical aversive conditioning to an auditory cue.Eur. J. Neurosci. 13, 1051–1054.

    Article  PubMed  CAS  Google Scholar 

  • Gambarana C, F Masi, A Tagliamonte, S Scheggi, O Ghiglieri and MG De Montis (1999) A chronic stress that impairs reactivity in rats also decreases dopaminergic transmission in the nucleus accumbens: a microdialysis study.J. Neurochem. 72, 2039–2046.

    Article  PubMed  CAS  Google Scholar 

  • Grace AA (2000) Gating of information flow within the limbic system and the pathophysiology of schizophrenia.Brain Res. Rev. 31, 330–341.

    Article  PubMed  CAS  Google Scholar 

  • Herbert H, A Klepper and J Ostwald (1997) Afferent and efferent connections of the ventrolateral tegmental area in the rat.Anat. Embryol. 196, 235–259.

    Article  PubMed  CAS  Google Scholar 

  • Imperato A, S Cabib and S Puglisi-Allegra (1993) Repeated stressful experiences differently affect the time-dependent responses of the mesolimbic dopamine system to the stressor.Brain Res. 601, 333–336.

    Article  PubMed  CAS  Google Scholar 

  • Jackson ME and B Moghaddam (2000) Basolateral amygdala regulation of dopamine release in the nucleus accumbens is governed by the prefrontal cortex.Soc. Neurosci. Abstr. 26, 764.769.

    Google Scholar 

  • Jedema H and B Moghaddam (1994) Glutamatergic control of dopamine release during stress in rat prefrontal cortex.J. Neurosci. 63, 785–788.

    CAS  Google Scholar 

  • Jedema H and B Moghaddam (1996) Characterization of excitatory amino acid modulation of dopamine release in the prefrontal cortex of conscious rats.J. Neurosci. 66, 1448–1453.

    CAS  Google Scholar 

  • Kalivas PW, P Duffy and J Barrow (1989) Regulation of the meso-corticolimbic dopamine system by glutamic acid receptor subtypes.J. Pharm. Exp. Ther. 251, 378–387.

    CAS  Google Scholar 

  • Karreman M and B Moghaddam (1996a) The prefrontal cortex regulates the basal release of dopamine in the limbic striatum: an effect mediated by ventral tegmental area.J. Neurosci. 66, 589–598.

    CAS  Google Scholar 

  • Karreman M and B Moghaddam (1996b) Effect of a pharmacological stressor on glutamate efflux in the prefrontal cortex.Brain Res. 716, 180–182.

    Article  PubMed  CAS  Google Scholar 

  • Keefe K, M Zigmond and E Abercrombie (1993a)In vivo regulation of extracellular dopamine in the neostriatum influence of impulse activity and local excitatory amino acids.J. Neural Transm. 91, 223–240.

    Article  CAS  Google Scholar 

  • Keefe K, A Sved, M Zigmond and E Abercrombie (1993b) Stress-induced dopamine release in the neostriatum: evaluation of the role of action potentials in nigrostriatal dopamine neurons or local initiation by endrogenous excitatory amino acids.J. Neurochem. 61, 1943–1952.

    Article  PubMed  CAS  Google Scholar 

  • Kelley AE (1999) Neural integrative activities of nucleus accum-bens subregions in relation to learning and motivation.Psychobiology 27, 198–213.

    Google Scholar 

  • Koob GF and EJ Nestler (1997) The neurobiology of drug addiction.J. Neuropsychiatry Clin. Neurosci. 9, 482–497.

    PubMed  CAS  Google Scholar 

  • LeMoal M, Simon H (1991) Mesocorticolimbic dopaminergic network: functional and regulatory roles.Physiol. Rev. 71, 155–234.

    CAS  Google Scholar 

  • Lowy M, L Gault and B Yammamato (1993) Adrenolectomy attenuates stress induced elevation in extracellular glutamate concentration in hippocampus.J. Neurosci. 61, 1957–1960.

    CAS  Google Scholar 

  • Lu W, LM Monteggia and ME Wolf (1999) Withdrawal from repeated amphetamine administration reduces NMDAR1 expression in the rat substantia nigra, nucleus accumbens and medial prefrontal cortex.Eur. J. Neurosci. 11, 3167–3177.

    Article  PubMed  CAS  Google Scholar 

  • Mogensen GL, LW Swanson and M Wu (1983) Neural projections from nucleus accumbens to globus pallidus, substantia innomi-nata, and lateral preoptic-lateral hypothalamic area: an anatomical and electrophysiological investigation in the rat.J. Neurosci. 3, 189–202.

    Google Scholar 

  • Moghaddam B (1993) Stress preferentially increases extraneuronal levels of excitatory amino acids in the prefrontal cortex: comparison to hippocampus and basal ganglia.J. Neurosci. 60, 1650–1657.

    CAS  Google Scholar 

  • Moore H, HJ Rose and AA Grace (2001) Chronic cold stress reduces the spontaneous activity of ventral tegmental dopamine neurons.Neuropsychopharmacology 24, 410–419.

    Article  PubMed  CAS  Google Scholar 

  • Morrow BA, RH Roth and JD Elsworth (2000) TMT, a predator odor, elevates mesoprefrontal dopamine metabolic activity and disrupts short-term working memory in the rat.Brain Res. Bull. 52, 519–523.

    Article  PubMed  CAS  Google Scholar 

  • Morrow BA, AW Clark and RH Roth (1993) Stress activation of mesocorticolimbic dopamine neurons: effects of a glycine/NMDA receptor antagonist.Eur. J. Pharmacol. 238, 255–262.

    Article  PubMed  CAS  Google Scholar 

  • Nauta WJH, GP Smith, RLM Faull and VB Domesick (1978) Efferent connections and nigral afferents of the nucleus accum-bens septi in the rat.Neuroscience 3, 385–401.

    Article  PubMed  CAS  Google Scholar 

  • Oades RD and GM Halliday (1987) Ventral tegmental (A10) system: neurobiology. 1. Anatomy and connectivity.Brain Res. 434, 117–165.

    PubMed  CAS  Google Scholar 

  • O’Donnell P and AA Grace (1995) Synaptic interactions amoung excitatory afferents to nucleus accumbens neurons: hippocampal gating of prefrontal cortical input. J. Neurosci.15, 3622–3639.

    PubMed  CAS  Google Scholar 

  • Paquet M, M Tremblay, JJ Soghomonian and Y Smith (1997) AMPA and NMDA glutamate receptor subunits in midbrain dopaminergic neurons in the squirrel monkey: an immunohisto-chemical andin situ hybridization study.J. Neurosci. 17, 1377–1396.

    PubMed  CAS  Google Scholar 

  • Phillipson OT (1979) Afferent projections to the ventral tegmental area of Tsai and interfascicular nucleus: a horseradish peroxidase study in the rat.J. Comp. Neurol. 187, 117–143.

    Article  PubMed  CAS  Google Scholar 

  • Piazza PV and M Le Moal (1998) The role of stress in drug self-administration.Trends Pharmacol. Sci. 19, 67–74.

    Article  PubMed  CAS  Google Scholar 

  • Piazza P, M Barrot, F Rouge-Pont, M Marinelli, S Maccari, D Abrous, H Simon and M Le Moal (1996) Suppression of gluto-corticoid secretion and antipsychotic drugs have similar effects on the mesolimbic dopaminergic transmission.Proc. Natl. Acad. Sci. USA 93, 15445–15450.

    Article  PubMed  CAS  Google Scholar 

  • Rajkowska G, JJ Miguel-Hidalgo, J Wei, G Dilley, SD Pittman, HY Meltzer, JC Overholser, BL Roth and CA Stockmeier (1999) Morphometric evidence for neuronal and glial prefrontal cell pathology in major depression.Biol. Psychiatry 45, 1085–1098.

    Article  PubMed  CAS  Google Scholar 

  • Rossetti ZL and RA Wise (1996) Stress increases extracellular glu-tamate and dopamine in the ventral tegmental area.Soc. Neurosci. Abstr. #38, 4.

    Google Scholar 

  • Salamone J (1991) Behavioral pharmachology of dopamine systems: a new synthesis, inThe Mesolimbic Dopamine System: From Motivation to Action (Wilner P and J Scheel-Kruger, Eds.) (J Wiley & Sons, New York, NY).

    Google Scholar 

  • Sepping P, W Wood, C Bellamy, PK Bridges, P O’Gormann, JR Bartlett and VK Patel (1977) Studies of endocrine activity, plasma tryptophan and catecholamine excretion on psychosurgical patients.Acta Psychiatrica Scand. 56, 1–14.

    Article  CAS  Google Scholar 

  • Serrano A, M D’Angio and B Scatton (1989) NMDA antagonists block restraint-induced increase in extracellular DOPAC in rat nucleus accumbens.Eur. J. Pharm. 162, 157–166.

    Article  CAS  Google Scholar 

  • Sesack SR, AY Deutch, RH Roth and BS Bunney (1989) Topographical organization of the efferent projections of the medial prefrontal cortex in the rat: an anterograde tract-tracing study withPhaseolus vulgaris leucoagglutinin.J. Comp. Neurol. 290, 213–242.

    Article  PubMed  CAS  Google Scholar 

  • Shaham Y and J Stewart (1995) Stress reinstates heroin-seeking in drug-free animals: an effect mimicking heroin, not withdrawl.Psychopharmacology 119, 334–341.

    Article  PubMed  CAS  Google Scholar 

  • Sorg BA and PW Kalivas (1991) Effects of cocaine and footshock stress on extracellular dopamine levels in the ventral striatum.Brain Res. 559, 29–36.

    Article  PubMed  CAS  Google Scholar 

  • Stoll AL, PF Renshaw, DA Yurgelun-Todd and BM Cohen (2000) Neuroimaging in bipolar disorder: What have we learned.Biol. Psychiatry 48, 505–517.

    Article  PubMed  CAS  Google Scholar 

  • Taber M and H Fibiger (1995) Electrical stimulation of the pre-frontal cortex increases dopamine release in the nucleus accumbens of the rat: modulation by metabotropic glutamate receptors.J. Neurosci. 15, 3896–3904.

    PubMed  CAS  Google Scholar 

  • Takahata R and B Moghaddam (1998) Glutamatergic regulation of basal and stimulus-activated dopamine release in the prefrontal cortex.J. Neurochem. 71, 1443–1449.

    PubMed  CAS  Google Scholar 

  • Takahata R and B Moghaddam (2000) Target-specific glutamater-gic regulation of dopamine neurons in the ventral tegmental area.J. Neurochem. 75, 1775–1778.

    Article  PubMed  CAS  Google Scholar 

  • Taylor J and T Robbins (1986) 6-Hydroxydopamine lesions of the nucleus accumbens but not the caudate nucleus attenuate responding with reward-related stimuli produced by intra-accumbens D-amphetamine.Psychopharmacology 90, 390–397.

    Article  PubMed  CAS  Google Scholar 

  • Van Eden C, EMD Hoorneman, RM Buijs, MAH Matthijssun, M Geffard and HBM Uylings (1987) Immunocytochemical localization of dopamine in the prefrontal cortex of the rat at the light electron microscopical level.Neuroscience 22, 849–862.

    Article  PubMed  Google Scholar 

  • Volkow ND and JS Fowler (2000) Addiction, a disease of compulsion and drive: involvement of the orbitofrontal cortex.Cereb. Cortex 10, 318–325.

    Article  PubMed  CAS  Google Scholar 

  • Volkow ND, JS Fowler and GJ Wang (1999) Imaging studies on the role of dopamine in cocaine reinforcement and addiction in humans.J. Psychopharmacol. 13, 337–345.

    Article  PubMed  CAS  Google Scholar 

  • Wang T and ED French (1993) Electrophysiological evidence for the existence of NMDA and non-NMDA receptors on rat ventral tegmental dopamine neurons.Synapse 13, 270–277.

    Article  PubMed  CAS  Google Scholar 

  • Wang T and E French (1995) NMDA, kainate and AMPA depolarize non-dopamine neurons in the rat ventral tegmentum.Brain Res. Bull. 36, 39–43.

    Article  PubMed  CAS  Google Scholar 

  • Weinberger D, K Berman and R Zec (1986) Physiological dysfunction of dorsolateral prefrontal cortex in schizophrenia. I. Regional cerebral blood flow (rCBF) evidence.Arch. Gen. Psychiatr. 43, 114–125.

    PubMed  CAS  Google Scholar 

  • Westerink BHC, HF Kwint and JB de Vries (1997) Eating-induced dopamine release from mesolimbic neurons is mediated by NMDA receptors in the ventral tegmental area: a dual-probe microdialysis study.J. Neurochem. 69, 662–668.

    Article  PubMed  CAS  Google Scholar 

  • White F (1996) Synaptic regulation of mesocorticolimbic dopamine neurons.Annu. Rev. Neurosci. 19, 405–436.

    Article  PubMed  CAS  Google Scholar 

  • Wise RA and PP Rompre PP (1989) Brain dopamine and reward.Annu. Rev. Psychol. 40, 191–225.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Bita Moghaddam.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Moghaddam, B., Jackson, M. Effect of stress on prefrontal cortex function. neurotox res 6, 73–78 (2004). https://doi.org/10.1007/BF03033299

Download citation

  • Received:

  • Revised:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF03033299

Keywords

Navigation