Skip to main content
Log in

Dopamine- or L-DOPA-induced neurotoxicity: The role of dopamine quinone formation and tyrosinase in a model of Parkinson’s disease

  • Published:
Neurotoxicity Research Aims and scope Submit manuscript

Abstract

Dopamine (DA)- or L-dihydroxyphenylalanine- (L-DOPA-) induced neurotoxicity is thought to be involved not only in adverse reaction induced by longterm L-DOPA therapy but also in the pathogenesis of Parkinson's disease. Numerousin vitro andin vivo studies concerning DA- or L-DOPA-induced neurotoxicity have been reported in recent decades. The reactive oxygen or nitrogen species generated in the enzymatical oxidation or auto-oxidation of an excess amount of DA induce neuronal damage and/or apoptotic or non-apoptotic cell death; the DA-induced damage is prevented by various intrinsic and extrinsic antioxidants. DA and its metabolites containing two hydroxyl residues exert cytotoxicity in dopaminergic neuronal cells mainly due to the generation of highly reactive DA and DOPA quinones which are dopaminergic neuron-specific cytotoxic molecules. DA and DOPA quinones may irreversibly alter protein function through the formation of 5-cysteinyl-catechols on the proteins. For example, the formation of DA quinone-α-synuclein consequently increases cytotoxic protofibrils and the covalent modification of tyrosine hydroxylase by DA quinones. The melanin-synthetic enzyme tyrosinase in the brain may rapidly oxidize excess amounts of cytosolic DA and L-DOPA, thereby preventing slowly progressive cell damage by auto-oxidation of DA, thus maintaining DA levels. Since tyrosinase also possess catecholamine-synthesizing activity in the absence of tyrosine hydroxylase (TH), the double-edged synthesizing and oxidizing functions of tyrosinase in the dopaminergic system suggest its potential for application in the synthesis of DA, instead of TH in the degeneration of dopaminergic neurons, and in the normalization of abnormal DA turnover in long-term L-DOPA-treated Parkinson's disease patients.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  • Amicrelli F, A Gasbarri, L Masciocco, A Pompili, C Pacitti, G Carlucci, G Palumbo and M Miranda (1999) The effect of intrastriatal injection of liposome-entrapped tyrosinase on the dopamine levels in the rat brain.Cell. Mol. Biol. (Noisy-le-grand) 45, 1093–1097.

    Google Scholar 

  • Asanuma M, N Ogawa, S Nishibayashi, M Kawai, Y Kondo and E Iwata (1995) Protective effects of pergolide on dopamine levels in the 6-hydroxydopamine-lesioned mouse brain.Arch. Int. Pharmacodyn. Ther. 329, 221–230.

    PubMed  CAS  Google Scholar 

  • Asanuma M, S Nishibayashi-Asanuma, I Miyazaki, M Kohno and N Ogawa (2001) Neuroprotective effects of non-steroidal anti-inflammatory drugs by direct scavenging of nitric oxide radicals.J. Neurochem. 76, 1895–1904.

    PubMed  CAS  Google Scholar 

  • Aubin N, O Curet, A Deffois and C Carter (1998) Aspirin and salicylate protect against MPTP-induced dopamine depletion in mice.J. Neurochem. 71, 1635–1642.

    PubMed  CAS  Google Scholar 

  • Baez S, Y Linderson and J Segura-Aguilar (1995) Superoxide dismutase and catalase enhance autoxidation during one-electron reduction of aminochrome by NADPH-cytochrome P-450 reductase.Biochem. Mol. Med. 54, 12–18.

    PubMed  CAS  Google Scholar 

  • Baez S, J Segura-Aguilar, M Widersten, AS Johansson and B Mannervik (1997) Glutathione transferases catalyse the detoxication of oxidized metabolites (o-quinones) of catecholamines and may serve as an antioxidant system preventing degenerative cellular processes.Biochem J. 324, 25–28.

    PubMed  CAS  Google Scholar 

  • Basma AN, EJ Moris, WJ Nicklas and HM Geller (1995) L-dopa cytotoxicity to PC12 cells in culture is via its autoxidation.J. Neurochem. 64, 825–832.

    PubMed  CAS  Google Scholar 

  • Ben-Shachar D, P Riderer and MB Youdim (1991) Iron-melanin interaction and lipid peroxidation: implications for Parkinson's disease.J. Neurochem. 57, 1609–1614.

    PubMed  CAS  Google Scholar 

  • Berman SB and TG Hastings (1999) Dopamine oxidation alters mitochondrial respiration and induces permeability transition in brain mitochondria: implications for Parkinson's disease.J. Neurochem. 73, 1127–1137.

    PubMed  CAS  Google Scholar 

  • Berman SB, MJ Zigmond and TG Hastings (1996) Modification of dopamine transporter function: effect of reactive oxygen species and dopamine.J. Neurochem. 67, 593–600.

    PubMed  CAS  Google Scholar 

  • Borg DC (1974) Free radicals in the human nervous system.Adv. Neurol. 5, 277–286.

    PubMed  CAS  Google Scholar 

  • Cadenas E, D Mira, A Brunmark, C Lind, J Segura-Aguilar and L Ernster (1988) Effect of superoxide dismutase on the autoxidation of various hydroquinones-a possible role of superoxide dismutase as a superoxide:semiquinone oxidoreductase.Free Radic. Biol. Med. 5, 71–79.

    PubMed  CAS  Google Scholar 

  • Cadet JL, R Last, V Kostic, S Przedborski and V Jackson-Lewis (1991) Long-term behavioral and biochemical effects of intrastriatal injections of 6-hydroxydopamine.Brain Res. Bull. 26, 707–713.

    PubMed  CAS  Google Scholar 

  • Casper D, U Yaparpalvi, N Rempel and P Werner (2000) Ibuprofen protects dopaminergic neurons against glutamate toxicityin vitro.Neurosci. Lett. 289, 201–204.

    PubMed  CAS  Google Scholar 

  • Cheng FC, JS Kuo, LG Chia and G Dryhurst (1996) Elevated 5-S-cysteinyldopamine/ homovanillic acid ratio and reduced homovanillic acid in cerebrospinal fluid: possible markers for and potential insights into the pathoetiology of Parkinson's disease.J. Neural Transm. 103, 433–446.

    PubMed  CAS  Google Scholar 

  • Cohen G and RE Heikkila (1974) The generation of hydrogen peroxide, superoxide radical, and hydroxyl radical by 6-hydroxy-dopamine, dialuric acid, and related cytotoxic agents.J. Biol. Chem. 249, 2447–2452.

    PubMed  CAS  Google Scholar 

  • Colado MI, E O'Shea, R Granados, B Esteban, AB Martin and AR Green (1999) Studies on the role of dopamine in the degeneration of 5-HT nerve endings in the brain of Dark Agouti rats following 3,4-methylenedioxymetham phetamine (MDMA or ‘ecstasy’) administration.Br. J. Pharmacol. 126, 911–924.

    PubMed  CAS  Google Scholar 

  • Conway KA, SJ Lee, JC Rochet, TT Ding, RE Williamson and PT Lansbury Jr (2000) Acceleration of oligomerization, not fibrillization, is a shared property of both α-synuclein mutations linked to early-onset Parkinson's disease: implications for pathogenesis and therapy.Proc. Natl. Acad. Sci. USA 97, 571–576.

    PubMed  CAS  Google Scholar 

  • Conway KA, JC Rochet, RM Bieganski and PT Lansbury Jr (2001) Kinetic stabilization of the α-synuclein protofibril by a dopamine-α-synuclein adduct.Science 294, 1346–1349.

    PubMed  CAS  Google Scholar 

  • Diaz-Veliz G, S Mora, MT Dossi, P Gomez, C Arriagada, J Montiel, F Aboitiz and J Segura-Aguilar (2002) Behavioral effects of aminochrome and dopachrome injected in the rat substantia nigra.Pharmacol. Biochem. Behav. 73, 843–850.

    PubMed  CAS  Google Scholar 

  • Double KL, L Zecca, P Costi, M Mauer, C Griesinger, S Ito, D Ben-Shachar, G Bringmann, RG Fariello, P Riederer and M Gerlach (2000) Structural characteristics of human substantia nigra neuromelanin and synthetic dopamine melanins.J. Neurochem. 75 2583–2589.

    PubMed  CAS  Google Scholar 

  • Drukarch B and FL van Muiswinkel (2000) Drug treatment of Parkinson's disease. Time for phase II.Biochem. Pharmacol. 59, 1023–1031.

    PubMed  CAS  Google Scholar 

  • Fahn S (1999) Parkinson disease, the effect of levodopa, and the ELL-DOPA trial. Earlier vs Later L-DOPA.Arch. Neurol. 56, 529–535.

    PubMed  CAS  Google Scholar 

  • Ferger B, P Teismann, CD Earl, K Kuschinsky and WH Oertel (1999) Salicylate protects against MPTP-induced impairments in dopaminergic neurotransmission at the striatal and nigral level in mice.Naunyn Schmiedebergs Arch. Pharmacol. 360, 256–261.

    PubMed  CAS  Google Scholar 

  • Filloux F and JJ Townsend (1993) Pre- and postsynaptic neurotoxic effects of dopamine demonstrated by intrastriatal injection.Exp. Neurol. 119, 79–88.

    PubMed  CAS  Google Scholar 

  • Foppoli C, R Coccia, C Cini and MA Rosei (1997) Catecholamines oxidation by xanthine oxidase.Biochim. Biophys. Acta 1334, 200–206.

    PubMed  CAS  Google Scholar 

  • Fornstedt B, E Rosengren and A Carlsson (1986) Occurrence and distribution of 5-S-cysteinyl derivatives of dopamine, dopa and dopac in the brains of eight mammalian species.Neuropharmacology 25, 451–454.

    PubMed  CAS  Google Scholar 

  • Giasson BI, JE Duda, IV Murray, Q Chen, JM Souza, HI Hurtig, H Ischiropoulos, JQ Trojanowski and VM Lee (2000) Oxidative damage linked to neurodegeneration by selective α-synuclein nitration in synucleinopathy lesions.Science 290, 985–989.

    PubMed  CAS  Google Scholar 

  • Gómez-Vargas M, S Nishibayashi-Asanuma, M Sanuma, Y Kondo, E Iwata and N Ogawa (1998) Pergolide scavenges both hydroxyl and nitric oxide free radicals in vitro and inhibits lipid peroxidation in different regions of the rat brain.Brain Res. 790, 202–208.

    PubMed  Google Scholar 

  • Graham DG (1978) Oxidative pathways for catecholamines in th genesis of neuromelanin and cytotoxic quinones.Mol. Pharmacol. 14, 633–643.

    PubMed  CAS  Google Scholar 

  • Halliwell B (1992) Reactive oxygen species and the central nervous systemJ. Neurochem. 59, 1609–1623.

    PubMed  CAS  Google Scholar 

  • Haque ME, M Asanuma, Y Higashi, I Miyazaki, K Tanaka and N Ogawa (2003) Apoptosis-inducing neurotoxicity of dopamine and its metabolites via reactive quinone generation in neuroblastoma cells.Biochim. Biophys. Acta 1619, 39–52.

    Google Scholar 

  • Hastings TG (1995) Enzymatic oxidation of dopamine: the role of prostaglandin H synthase.J. Neurochem. 64, 919–924.

    PubMed  CAS  Google Scholar 

  • Hastings TG, DA Lewis and MJ Zigmond (1996) Role of oxidation in the neurotoxic effects of intrastriatal dopamine injections.Proc. Natl. Acad. Sci. USA 93, 1956–1961.

    PubMed  CAS  Google Scholar 

  • Hearing VJ and TM Ekel (1976) Mammalian tyrosinase. A comparison of tyrosine hydroxylation and melanin formation.Biochem. J. 157, 549–557.

    PubMed  CAS  Google Scholar 

  • Heikkila RE and G Cohen (1973) 6-Hydroxydopamine: evidence for superoxide radical as an oxidative intermediate.Science 181, 456–457.

    PubMed  CAS  Google Scholar 

  • Higashi Y, M Asanuma, I Miyazaki and N Ogawa (2000) Inhibition of tyrosinase reduces cell viability in catecholaminergic neuronal cells.J. Neurochem. 75, 1771–1774.

    PubMed  CAS  Google Scholar 

  • Iida M, I Miyazaki, K Tanaka, H Kabuto, E Iwata-Ichikawa and N Ogawa (1999) Dopamine D2 receptor-mediated antioxidant and neuroprotective effects of ropinirole, a dopamine agonist.Brain Res. 838, 51–59.

    PubMed  CAS  Google Scholar 

  • Ikemoto K, J Nagatsu, S Ito, RA King, A Nishimura and T Nagatsu (1998) Does tyrosinase exist in neuromelanin-pigmented neurons in the human substantia nigra?.Neurosci. Lett. 253, 198–200.

    PubMed  CAS  Google Scholar 

  • Ito S and K Fujita (1982) Conjugation of dopa and 5-S-cysteinyldopa with cysteine mediated by superoxide radical.Biochem. Pharmacol. 31, 2887–2889.

    PubMed  CAS  Google Scholar 

  • Kastner A, EC Hirsch, O Lejeune, F Javoy-Agid, O Rascol and Y Agid (1992) Is the vulnerability of neurons in the substantia nigra of patients with Parkinson's disease related to their neuromelanin content?J Neurochem. 59, 1080–1089.

    PubMed  CAS  Google Scholar 

  • Kerry N and C Rice-Evans (1999) Inhibition of peroxynitrite-mediated oxidation of dopamine by flavonoid and phenolic antioxidants and their structural relationships.J. Neurochem. 73, 247–253.

    PubMed  CAS  Google Scholar 

  • Kirik D, C Rosenblad, C Burger, C Lundberg, TE Johansen, N Muzyczka, RJ Mandel and A Bjorklund (2002) Parkinson-like neurodegeneration induced by targeted overexpression of α-synuclein in the nigrostriatal system.J. Neurosci. 22, 2780–2791.

    PubMed  CAS  Google Scholar 

  • Korytowski W, T Sarna, B Kalyanaraman and RC Sealy (1987) Tyrosinase-catalyzed oxidation of dopa and related catechol(amine)s: a kinetic electron spin resonance investigation using spin-stabilization and spin label oximetry.Biochim Biophys. Acta 924, 383–392.

    PubMed  CAS  Google Scholar 

  • Korytowski W, T Sarna and M Zarba (1995) Antioxidant action of neuromelanin: the mechanism of inhibitory effect on lipid peroxidation.Arch. Biochem. Biophys. 319, 142–148.

    PubMed  CAS  Google Scholar 

  • Kostrezewa RM (1999) Selective neurotoxins, chemical tool to probe the mind: the first thirty years and beyond.Neurotoxicity Res. 1, 3–25.

    Google Scholar 

  • Kostrzewa RM and D Jacobowit (1974) Pharmacological actions of 6-hydroxydopamine. Pharmacol. Rev.26, 199–288.

    PubMed  CAS  Google Scholar 

  • Kostrzewa RM, JP Kostrzewa and R Brus (2000) Dopaminergic denervation enhances susceptibility to hydroxyl radicals in rat neostriatum.Amino Acids 19, 183–1999.

    PubMed  CAS  Google Scholar 

  • Kostrzewa RM, JP Kostrzewa and R Brus (2002) Neuroprotective and neurotoxic roles of levodopa (L-DOPA) in neurodegenerative disorders relating to Parkinson's disease.Amino Acids 23, 57–63.

    PubMed  CAS  Google Scholar 

  • Kuhn DM, RE Arthur Jr, DM Thomas and LA Elferink (1999) Tyrosine hydroxylase is inactivated by catechols-quinones aconverted to a redox-cycling quinoprotein: possible relevance to Parkinson's disease.J. Neurochem. 73, 1309–1317.

    PubMed  CAS  Google Scholar 

  • Lai CT and PH Yu (1997) Dopamine- and L-β-3,4-dihydroxyphenylalanine hydrochloride (L-Dopa)-induced cytotoxicity towards catecholaminegic neuroblastoma SH-SY5Y cells. Effects of oxidative stress and antioxidative factors.Biochem. Pharmacol. 53, 363–372.

    PubMed  CAS  Google Scholar 

  • LaVoie MJ and TG Hastings (1999a) Dopamine quinone formation and protein modification associated with the striatal neurotoxicity of methamphetamine: evidence against a role for extracellular dopamine.J. Neurosci. 19, 1484–1491.

    PubMed  CAS  Google Scholar 

  • LaVoie MJ and TG Hastings (1999b) Peroxynitrite- and nitrite-induced oxidation of dopamine: implications for nitric oxide in dopaminergic cell loss.J. Neurochem. 73, 2546–2554.

    PubMed  CAS  Google Scholar 

  • Lee HJ, SH Kim, KW Kim, JH Um, HW Lee, BS Chung and CD Kang (2001) Antipoptotic role of NF-KB in the auto-oxidized dopamine-induced apoptosis of PC12 cells.J. Neurochem. 76, 602–609.

    PubMed  CAS  Google Scholar 

  • Lee M, D Hyun, B Halliwell and P Jenner (2001) Effect of the over-expression of wild-type or mutant α-synuclein on cell susceptibility to insult.J. Neurochem. 76, 998–1009.

    PubMed  CAS  Google Scholar 

  • Li H and G Dryhurst (1997) Irreversible inhibition of mitochondrial complex I by 7-(2-aminoethyl)-3,4-dihydro-5-hydroxy-2H-1,4-benzothiazine-3-carboxylic acid (DHBT-1): a putative nigral endotoxin of relevance to Parkinson's diseaseJ. Neurochem. 69, 1530–1541.

    PubMed  CAS  Google Scholar 

  • Mattammal MB, R Stong, VM Lakshmi, HD, Chung and AH Stephenson (1995) Prostaglandin H synthetase-mediated metabolism of dopamine: implication for Parkinson's disease.J. Neurochem. 64, 1645–1654.

    PubMed  CAS  Google Scholar 

  • Metodiewa D and C Koska (2000) Reactive oxygen species and reactive nitrogen species: relevance to cyto(neuro)toxic events and neurologic disorders. An overview.Neurotoxicity Res. 1, 197–233.

    CAS  Google Scholar 

  • Miranda M and D Botti (1983) Harding-passey mouse-melanoma tyrosinase inactivation by reaction products and activation by L-epinephrine.Gen. Pharmacol. 14, 231–237.

    PubMed  CAS  Google Scholar 

  • Miranda M, D Botti, A Bonfigli, T Ventura and A Arcadi (1984) Tyrosinase-like activity in normal human substantia nigra.Gen. Pharmacol. 15, 541–544.

    PubMed  CAS  Google Scholar 

  • Miranda M, F Amicarelli, A Poma, AM Ragneli and A Arcadi (1988) Liposome-entrapped tyrosinase: a tool to investigate the regulation of the Raper-Mason pathway.Biochim. Biophys. Acta 966, 276–286.

    PubMed  CAS  Google Scholar 

  • Murata M and I Kanazawa (1993) Repeated L-dopa administration reduces the ability of dopamine storage and abolishes the supersensitivity of dopamine receptors in the striatum of intact rat.Neurosci. Res. 16, 15–23.

    PubMed  CAS  Google Scholar 

  • Mytilineou C, SK Han and G Cohen (1993) Toxic and protective effects of L-dopa on mesencephalic cell cultures.J. Neurochem. 61, 1470–1478.

    PubMed  CAS  Google Scholar 

  • Nishibayashi S, M Asanuma, M Kohno, M Gómez-Vargas and N Ogawa (1996) Scavenging effects of dopamine agonists on nitric oxide radicals.J. Neurochem. 67, 2208–2211.

    PubMed  CAS  Google Scholar 

  • Offen D, I Ziv, H Sternin, E Melamed and A Hochman (1996) Prevention of dopamine-induced cell death by thiol antioxidants: possible implications for treatment of Parkinson's disease.Exp. Neurol. 141, 32–39.

    PubMed  CAS  Google Scholar 

  • Ogawa N, R Edmatsu, K Mizukawa, M Asanuma, M Kohno and A Mori (1993) Degeneration of dopaminergic neurons and free radicals. Possible participation of levodopa.Adv. Neurol. 60, 242–250.

    PubMed  CAS  Google Scholar 

  • Ogawa N, M Asanuma, Y Kondo, Y Kawada, M Yamamoto and A Mori (1994a) Differential effects of chronic L-DOPA treatment on lipid peroxydation in the mouse brain with or without pretreatment with 6-hydroxydopamine.Neurosci. Lett. 171, 55–58.

    PubMed  CAS  Google Scholar 

  • Ogawa N, K Tanaka, M Asanuma, M Kawai, T Masumizu, M Kohno and A Mori (1994b) Bromocriptine protects mice against 6-hydroxydopamine and scavenges hydroxyl free radicalsin vitro.Brain Res. 657, 207–213.

    PubMed  CAS  Google Scholar 

  • Ogawa N, K Tanaka and M Asanuma (2000) Bromocriptine markedly suppresses levodopa-induced abnormal increase of dopamine turnover in the parkinsonian striatum.Neurochem. Res. 25, 755–758.

    PubMed  CAS  Google Scholar 

  • Olanow CW and G Cohen (1992). The pathogenesis of Parkinson's disease, In: Olanow CW and AN Licherman (Eds),The Scientific Basis for the Treatment of Parkinson's Disease (The Parthenon Publishing Group, Lanes, U.K.), pp. 59–76.

    Google Scholar 

  • Ostrerova-Golts N, L Petrucelli, J Hardy, JM Lee, M Farer and B Wolozin (2000) The A53T α-synuclein mutation increases irondependent aggregation and toxicity.J. Neurosci. 20, 6048–6054.

    PubMed  CAS  Google Scholar 

  • Pardo B, MA Mena, MJ Casarejos, CL Paino and JG De Yebenes (1995a) Toxic effects of L-DOPA on mesencephalic cell cultures: protection with antioxidants.Brain Res. 682, 133–143.

    PubMed  CAS  Google Scholar 

  • Pardo B, MA Mena and JG de Yebenes (1995b) L-dopa inhibits complex IV of the electron transport chain in catecholamine-rich human neuroblastoma NB69 cells.J. Neurochem. 64, 576–582.

    PubMed  CAS  Google Scholar 

  • Paris I, A Dagnino-Subiabre, K Marcelain, LB Bennett, P Caviedes, R Caviedes, CO Azar and J Segura-Aguilar (2001) Copper neurotoxicity is dependent on dopamine-mediated copper uptake and one-electron reduction of aminochrome in a rat substantia nigra neuronal cell line.J. Neurochem. 77, 519–529.

    PubMed  CAS  Google Scholar 

  • Pilas B, T Sarna, B Kalyanaraman and HM Swartz (1988) The effect of melanin on iron associated decomposition of hydrogen peroxide.Free Radic. Biol. Med. 4, 285–293.

    PubMed  CAS  Google Scholar 

  • Przedborski S, V Jackson-Lewis, U Muthane, H Jiang, M Ferreira, AB Naini and S Fahn (1993) Chronic levodopa administration alters cerebral mitochondrial respiratory chain activity.Ann. Neurol. 34, 715–723.

    PubMed  CAS  Google Scholar 

  • Rios M, B Habecker, T Sasaka, G Eisenhofer, H Tian, S Landis, D Chikaraishi and S Roffler-Tarlov (1999) Catecholamine synthesis is mediated by tyrosinase in the absence of tyrosine hydroxylase.J. Neurosci. 19, 3519–3526.

    PubMed  CAS  Google Scholar 

  • Rosei MA, C Blarzino, C Foppoli, L Mosca and R Cocia, (1994) Lipoxygenase-catalyzed oxidation of catecholamines.Biochem. Biophys. Res. Commun. 200, 344–350.

    PubMed  CAS  Google Scholar 

  • Schultzberg M, J Segura-Aguilar and C Lind (1988) Distribution of DT diaphorase in the rat brain: biochemical and immunohistochemical studies.Neuroscience 27, 763–776.

    PubMed  CAS  Google Scholar 

  • Schwabe K, G Lassmann, W Damerau and H Naundorf (1989) Protection of melanoma cells against superoxide radicals by melanins.J. Cancer.Res. Clin. Oncol. 115, 597–600.

    PubMed  CAS  Google Scholar 

  • Segura-Aguilar J and C Lind (1989) On the mechanism of the Mn3(+)-induced neurotoxicity of dopamine:prevention of quinone-derived oxygen toxicity by DT diaphorase and superoxide dismutase.Chem. Biol. Interact. 72, 309–324.

    PubMed  CAS  Google Scholar 

  • Segura-Aguilar J, S Baez, M Widersten, CJ Welch and B Mannervik (1997) Human class Mu glutathione transferases, in particular isoenzyme M2-2, catalyze detoxication of the dopamine metabolite aminochrome.J. Biol. Chem. 272, 5727–5731.

    PubMed  CAS  Google Scholar 

  • Segura-Aguilar J, D Metodiewa and CJ Welch (1998) Metabolic activation of dopamineo-quinones too-semiquinones by NADPH cytochrome P450 reductase may play an important role in oxidative stress and apoptotic effects.Biochim. Biophys. Acta 1381, 1–6.

    PubMed  CAS  Google Scholar 

  • Smythies J (1999) The neurotoxicity of glutamate, dopamine, iron and reactive oxygen species: functional interrelationships in health and disease: a review-discussion.Neurotoxicity Res. 1, 27–39.

    CAS  Google Scholar 

  • Solano F, VJ Hearing and JC Garcia-Borron (2000) Neurotoxicity due too-quinone: neuromelanin formation and possible mechanisms foro-quinone detoxification.Neurotoxicity Res. 1, 153–169.

    CAS  Google Scholar 

  • Spencer JP, A Jenner, J Butler, OI Aruoma, DT Dexter, P Jenner and B Halliwell (1996) Evaluation of the pro-oxidant and antioxidant actions of L-DOPA and dopaminein vitro: implications for Parkinson's disease.Free Radic. Res. 24, 95–105.

    PubMed  CAS  Google Scholar 

  • Spencer JP, P Jenner, SE Daniel, AJ Lees, DC Marsden and B Halliwell (1998) Conjugates of catecholamines with cysteine and GSH in Parkinson's disease: possible mechanisms of formation involving reactive oxygen species.J. Neurochem. 71, 2112–2122.

    PubMed  CAS  Google Scholar 

  • Sulzer D and L Zecca (2000) Intraneuronal dopamine-quinone synthesis: a review.Neurotoxicity Res. 1, 181–195.

    CAS  Google Scholar 

  • Sulzer D, J Bogulavsky, KE Larsen, G Behr, E Karatekin, MH Kleinman, N Turro, D Krantz, RH Edwards, LA Greene and L Zecca (2000) Neuromelanin biosynthesis is driven by excess cytosolic catecholamines not accumulated by synaptic vesicles.Proc. Natl. Acad. Sci. USA 97, 11869–11874.

    PubMed  CAS  Google Scholar 

  • Tabrizi SJ, M Orth, JM Wilkinson, JW Taanman, TT Warner, JM Cooper and AH Schapira (2000) Expression of mutant α-synuclein causes increased susceptibility to dopamine toxicity.Hum. Mol. Genet. 9, 2683–2689.

    PubMed  CAS  Google Scholar 

  • Takashima H, M Tsujihata, M Kishikawa and WJ Freed (1999) Bromocriptine protects dopaminergic neurons from levodopa-induced toxicity by stimulating D(2)receptors.Exp. Neurol. 159, 98–104.

    PubMed  CAS  Google Scholar 

  • Tanaka M, A Sotomatsu, T Yoshida and S Hirai (1995) Inhibitory effects of bromocriptine on phospholipid peroxidation induced by dopa and iron.Neurosci. Lett. 183, 116–119.

    PubMed  CAS  Google Scholar 

  • Teismann P and B Ferger (2001) Inhibition of the cyclooxygenase isoenzymes COX-1 and COX-2 provide neuroprotection in the MPTP-mouse model of Parkinson's disease.Synapse 39, 167–174.

    PubMed  CAS  Google Scholar 

  • Terasaka H, A Tamura, F Takayama, M Kashimata, K Ohtomo, M Machino, S Fujisawa, M Toguchi, Y Kanda, S Kunii, K Kusama, A Ishino, S Watanabe, K Satoh, H Takano, M Takahama and H Sakagami (2000) Induction of apoptosis by dopamine in human oral tumor cell lines.Anticancer Res. 20, 243–250.

    PubMed  CAS  Google Scholar 

  • Tief K, M Hahne, A Schmidt and F Beermann (1996a) Tyrosinase, the key enzyme in melanin synthesis, is expressed in murine brain.Eur. J. Biochem. 241, 12–16.

    PubMed  CAS  Google Scholar 

  • Tief K, A Schmidt, A Aguzzi and F Beermann (1996b) Tyrosinase is a new marker for cell populations in the mouse neural tube.Dev. Dyn. 205, 445–456.

    PubMed  CAS  Google Scholar 

  • Tief K, A Schmidt and F Beermann (1997) Regulation of the tyrosinase promoter in transgenic mice: expression of a tyrosinase-lacZ fusion gene in embryonic and adult brain.Pigment Cell Res. 10, 153–157.

    PubMed  CAS  Google Scholar 

  • Tief K, A Schmidt and F Beermann (1998) New evidence for presence of tyrosinase in substantia nigra, forebrain and midbrain.Mol. Brain Res. 53, 307–310.

    PubMed  CAS  Google Scholar 

  • Tse DC, RL McCreery and RN Adams (1976) Potential oxidative pathways of brain catecholamines.J. Med. Chem. 19, 37–40.

    PubMed  CAS  Google Scholar 

  • van der Putten H, KH Wiederhold, A Probst, S Barbieri, C Mistl, S Danner, S Kauffmann, K Hofele, WP Spooren, MA Ruegg, S Lin, P Caroni, B Sommer, M Tolnay and G Bilbe (2000) Neuropathology in mice expressing human α-synuclein.J. Neurosci. 20, 6021–6029.

    PubMed  Google Scholar 

  • Volles MJ, SJ Lee, JC Rochet, MI Shtilerman, TT Ding, JC Kessler and PT Lansbury Jr (2001) Vesicle permeabilization by protofibrillar alpha-synuclein: implications for the pathogenesis and treatment of Parkinson's disease.Biochemistry 40, 7812–7819.

    PubMed  CAS  Google Scholar 

  • Wakamatsu K, S Ito and T Nagatsu (1991) Cysteinyldopamine is not incorporated into neuromelanin.Neurosci. Lett. 131, 57–60.

    PubMed  CAS  Google Scholar 

  • Walkinshaw G and CM Waters (1995) Induction of apoptosis in carecholaminergic PC12 cells by L-DOPA. Implications for the treatment of Parkinson's disease.J. Clin. Invest. 95, 2458–246.

    PubMed  CAS  Google Scholar 

  • Weingarten P, J Bermak and QY Zhou (2001) Evidence for nonoxidative dopamine cytotoxicity: potent activation of NF-KB and lack of protection by anti-oxidants.J. Neurochem. 76, 1794–1804.

    PubMed  CAS  Google Scholar 

  • Xu J, SY Kao, FJ Lee, W Song, LW Jin and BA Yankner (2002) Dopamine-dependent neurotoxicity of α-synuclein: a mechanism for selective neurodegeneration in Parkinson disease.Nature Med. 8, 600–606.

    PubMed  CAS  Google Scholar 

  • Xu Y, AH Stokes, WM Freeman, SC Kumer, BA Vogt and KE Vrana (1997) Tyrosinase mRNA is expressed in human substantia nigra.Mol. Brain Res. 45, 159–162.

    PubMed  CAS  Google Scholar 

  • Xu Y, AH Stokes, R Roskoski Jr and KE Vrana (1998) Dopamine, in the presence of tyrosinase, covalently modifies and inactivates tyrosine hydroxylase.J. Neurosci. Res. 54, 691–697.

    PubMed  CAS  Google Scholar 

  • Yoshioka M, K Tanaka, I Miyazaki, N Fujita, Y Higashi, M Asanuma and N Ogawa (2002) The dopamine agonist cabergoline provides neuroprotection by activation of the glutathione system and scavenging free radicals.Neurosci. Res. 43, 259–267.

    PubMed  CAS  Google Scholar 

  • Zareba M, A Bober, W Korytowski, L Zecca and T Sarna (1995) The effect of a synthetic neuromelanin on yield of free hydroxyl radicals generated in model systems.Biochim. Biophys. Acta 1271, 343–348.

    PubMed  Google Scholar 

  • Zecca L and HM Swartz (1993) Total and paramagnetic metals in human substantia nigra and its neuromelanin.J. Neural Transm. Park. Dis. Dement. Sect. 5, 203–213.

    PubMed  CAS  Google Scholar 

  • Zecca L, R Pietra, C Goj, C Mecacci, D Radice and E Sabbioni (1994) Iron and other metals in neuromelanin, substantia nigra, and putamen of human brain.J. Neurochem. 62, 1097–1101.

    PubMed  CAS  Google Scholar 

  • Zecca L, T Shima, A Stroppolo, C Goj, GA Battiston, R Gerbasi, T Sarna and HM Swartz (1996) Interaction of neuromelanin and iron in substantia nigra and other areas of human brain.Neuroscience 73, 407–415.

    PubMed  CAS  Google Scholar 

  • Zecca L, R Fariello, P Riederer, D Sulzer, A Gatti and D Tampellini (2002) The absolute concentration of nigral neuromelanin, assayed by a new sensitive method, increases throughout the life and is dramatically decreased in Parkinson's diseaseFEBS Lett. 510, 216–220.

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Masato Asanuma.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Asanuma, M., Miyazaki, I. & Ogawa, N. Dopamine- or L-DOPA-induced neurotoxicity: The role of dopamine quinone formation and tyrosinase in a model of Parkinson’s disease. neurotox res 5, 165–176 (2003). https://doi.org/10.1007/BF03033137

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF03033137

Keywords

Navigation