Skip to main content
Log in

Apport des biomarqueurs au diagnostic de la maladie de Parkinson

Biomarkers and Parkinson’ disease: recent developments

  • Dossier
  • Revue
  • Published:
Bio Tribune Magazine

Résumé

La forte prévalence des maladies neurodégénératives chez les personnes âgées en fait un enjeu de santé publique dans nos sociétés. L’amélioration de leur prise en charge viendra d’abord des progrès réalisés dans le diagnostic, notamment aux stades initiaux. La contribution importante des biomarqueurs au diagnostic de la maladie d’Alzheimer laisse espérer un développement similaire dans la maladie de Parkinson. Des travaux récents montrent l’intérêt de marqueurs des agrégats d’α-synucléine ou du stress oxydatif dans le sang et le liquide cérébrospinal.

Abstract

Neurodegenerative diseases have a high prevalence in the elderly. Progress in medical care depends on the accuracy and precocity of the diagnosis. Biomarkers have proved to be a valuable tool for the diagnosis of Alzheimer’s disease and a similar development is expected for Parkinson’s disease. Recent data suggest that markers of α-synuclein aggregation and oxidative stress in blood and cerebrospinal fluid could contribute to the diagnosis of Parkinson’s disease.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

/+/ Références

  1. Biomarkers Definitions Working Group (2001) Biomarkers and surrogate endpoints: preferred definitions and conceptual framework. Clin Pharmacol Ther 69(3): 89–95

    Article  Google Scholar 

  2. Van Everbroeck B, Boons J, Cras P (2005) Cerebrospinal fluid biomarkers in Creutzfeldt-Jakob disease. Clin Neurol Neurosurg 107(5): 355–60.

    Article  PubMed  Google Scholar 

  3. Dubois B, Feldman HH, Jacova C, et al. (2007) Research criteria for the diagnosis of Alzheimer’s disease: revising the NINCDS-ADRDA criteria. Lancet Neurol 6(8): 734–46

    Article  PubMed  Google Scholar 

  4. Blennow K, Hampel H (2003) CSF markers for incipient Alzheimer’s disease. Lancet Neurol 2(10): 605–13

    Article  PubMed  CAS  Google Scholar 

  5. icieli G, Tosi P, Marcheselli S, Cavallini A (2003) Autonomic dysfunction in Parkinson’s disease. Neurol Sci 24 Suppl 1: S32–4

    Google Scholar 

  6. Nussbaum RL, Ellis CE (2003) Alzheimer’s disease and Parkinson’s disease. N Engl J Med 348(14): 1356–64

    Article  PubMed  CAS  Google Scholar 

  7. de Rijk MC, Launer LJ, Berger K, et al. (2000) Prevalence of Parkinson’s disease in Europe: A collaborative study of population-based cohorts. Neurologic Diseases in the Elderly Research Group. Neurology 54(11 Suppl 5): S21–3

    PubMed  Google Scholar 

  8. Jankovic J (2008) Parkinson’s disease: clinical features and diagnosis. J Neurol Neurosurg Psychiatry 79(4): 368–76

    Article  PubMed  CAS  Google Scholar 

  9. Dauer WT, Przedborski S (2003) Parkinson’s Disease: mechanisms and models. Neuron 39: 889–909

    Article  PubMed  CAS  Google Scholar 

  10. Spillantini MG, Schmidt ML, Lee VM, et al. (1997) Alpha-synuclein in Lewy bodies. Nature 388(6645): 839–40

    Article  PubMed  CAS  Google Scholar 

  11. Farrer MJ (2006) Genetics of Parkinson disease: paradigm shifts and future prospects. Nat Rev Genet 7(4): 306–18

    Article  PubMed  CAS  Google Scholar 

  12. Fujiwara H, Hasegawa M, Dohmae N, et al. (2002) alpha-Synuclein is phosphorylated in synucleinopathy lesions. Nat Cell Biol 4(2): 160–4

    PubMed  CAS  Google Scholar 

  13. Anderson JP, Walker DE, Goldstein JM, et al. (2006) Phosphorylation of Ser-129 is the dominant pathological modification of alpha-synuclein in familial and sporadic Lewy body disease. J Biol Chem 281(40): 29739–52

    Article  PubMed  CAS  Google Scholar 

  14. Del Tredici K, Rüb U, De Vos RA, et al. (2002) Where does parkinson disease pathology begin in the brain? J Neuropathol Exp Neurol 61(5): 413–26

    PubMed  Google Scholar 

  15. Hilker R, Schweitzer K, Coburger S, et al. (2005) Nonlinear progression of Parkinson disease as determined by serial positron emission tomographic imaging of striatal fluorodopa F 18 activity. Arch Neurol 62(3): 378–82

    Article  PubMed  Google Scholar 

  16. Chaudhuri KR, Healy DG, Schapira AH (2006) Non-motor symptoms of Parkinson’s disease: diagnosis and management. Lancet Neurol 5(3): 235–45

    Article  PubMed  Google Scholar 

  17. Tolosa E, Wenning G, Poewe W (2006) The diagnosis of Parkinson’s disease. Lancet Neurol 5(1): 75–86

    Article  PubMed  Google Scholar 

  18. Poewe, W, Wenning G (2002) The differential diagnosis of Parkinson’s disease. Eur J Neurol 9 Suppl 3: 23–30

    Article  PubMed  Google Scholar 

  19. Przedborski S, Jackson-Lewis V, Vila M, et al. (2003) Free radical and nitric oxide toxicity in Parkinson’s disease. Adv Neurol 91: 83–94

    PubMed  CAS  Google Scholar 

  20. Giasson BI, Duda JE, Murray IV, et al. (2000) Oxidative damage linked to neurodegeneration by selective alpha-synuclein nitration in synucleinopathy lesions. Science 290(5493): 985–9

    Article  PubMed  CAS  Google Scholar 

  21. Lin MT, Beal MF (2006) Mitochondrial dysfunction and oxidative stress in neurodegenerative diseases. Nature 443(7113): 787–95

    Article  PubMed  CAS  Google Scholar 

  22. Langston JW, Ballard P, Tetrud JW, Irwin I (1983) Chronic Parkinsonism in humans due to a product of meperidine-analog synthesis. Science 219(4587): 979–80

    Article  PubMed  CAS  Google Scholar 

  23. Gash DM, Rutland K, Hudson NL, et al. (2008) Trichloroethylene: Parkinsonism and complex 1 mitochondrial neurotoxicity. Ann Neurol 63(2): 184–92

    Article  PubMed  Google Scholar 

  24. El-Agnaf OM, Salem SA, Paleologou KE, et al. (2003) Alpha-synuclein implicated in Parkinson’s disease is present in extracellular biological fluids, including human plasma. FASEB J 17(13): 1945–7

    PubMed  CAS  Google Scholar 

  25. Li QX, Campbell BC, McLean CA, et al. (2002) Platelet alpha- and gamma-synucleins in Parkinson’s disease and normal control subjects. J Alzheimers Dis 4(4): 309–15

    PubMed  CAS  Google Scholar 

  26. El-Agnaf OM, Salem SA, Paleologou KE, et al. (2006) Detection of oligomeric forms of alpha-synuclein protein in human plasma as a potential biomarker for Parkinson’s disease. FASEB J 20(3): 419–25

    Article  PubMed  CAS  Google Scholar 

  27. Ross CA, Poirier MA (2004) Protein aggregation and neurodegenerative disease. Nat Med 10 Suppl: S10–7

    Article  PubMed  Google Scholar 

  28. Schapira AH, Cooper JM, Dexter D, et al. (1990) Mitochondrial complex I deficiency in Parkinson’s disease. J Neurochem 54(3): 823–7

    Article  PubMed  CAS  Google Scholar 

  29. Krige D, Carroll MT, Cooper JM, et al. (1992) Platelet mitochondrial function in Parkinson’s disease. The Royal Kings and Queens Parkinson Disease Research Group. Ann Neurol 32(6): 782–8

    Article  PubMed  CAS  Google Scholar 

  30. Blandini F, Nappi G, Greenamyre JT (1998) Quantitative study of mitochondrial complex I in platelets of parkinsonian patients. Mov Disord 13(1): 11–5

    Article  PubMed  CAS  Google Scholar 

  31. Hanagasi HA, Ayribas D, Baysal K, et al. (2005) Mitochondrial complex, I II/III, and IV activities in familial and sporadic Parkinson’s disease. Int J Neurosci 115(4): 479–93

    Article  PubMed  CAS  Google Scholar 

  32. Jenner P (1993) Presymptomatic detection of Parkinson’s disease. J Neural Transm Suppl 40: 23–36

    PubMed  CAS  Google Scholar 

  33. Scherzer CR, Eklund AC, Morse LJ, et al. (2007) Molecular markers of early Parkinson’s disease based on gene expression in blood. Proc Natl Acad Sci USA 104(3): 955–60

    Article  PubMed  CAS  Google Scholar 

  34. Bogdanov M, Matson WR, Wang L, et al. (2008) Metabolomic profiling to develop blood biomarkers for Parkinson’s disease. Brain 131(Pt 2): 389–96

    Article  PubMed  Google Scholar 

  35. Shin Y, Klucken J, Patterson C, et al. (2005) The co-chaperone carboxyl terminus of Hsp70-interacting protein (CHIP) mediates alpha-synuclein degradation decisions between proteasomal and lysosomal pathways. J Biol Chem 280(25): 23727–34

    Article  PubMed  CAS  Google Scholar 

  36. Goodacre R (2005) Metabolomics shows the way to new discoveries. Genome Biol 6(11): 354

    Article  PubMed  Google Scholar 

  37. Kikuchi A, Takeda A, Onodera H, et al. (2002) Systemic increase of oxidative nucleic acid damage in Parkinson’s disease and multiple system atrophy. Neurobiol Dis 9(2): 244–8

    Article  PubMed  CAS  Google Scholar 

  38. Sato S, Mizuno Y, Hattori N (2005) Urinary 8-hydroxydeoxyguanosine levels as a biomarker for progression of Parkinson disease. Neurology 64(6): 1081–3

    PubMed  CAS  Google Scholar 

  39. Younes-Mhenni S, Frih-Ayed M, Kerkeni A, et al. (2007) Peripheral blood markers of oxidative stress in Parkinson’s disease. Eur Neurol 58(2): 78–83

    PubMed  CAS  Google Scholar 

  40. de Lau LM, Koudstaal PJ, Hofman A, Breteler MM. (2005) Serum uric acid levels and the risk of Parkinson disease. Ann Neurol 58(5): 797–800

    Article  PubMed  Google Scholar 

  41. Buhmann C, Arlt S, Kontush A, Möller-Bertram T, et al. (2004) Plasma and CSF markers of oxidative stress are increased in Parkinson’s disease and influenced by antiparkinsonian medication. Neurobiol Dis 15(1): 160–70

    Article  PubMed  CAS  Google Scholar 

  42. Forte G, Bocca B, Senofonte O, et al. (2004) Trace and major elements in whole blood, serum, cerebrospinal fluid and urine of patients with Parkinson’s disease. J Neural Transm 111(8): 1031–40

    Article  PubMed  CAS  Google Scholar 

  43. Schwarzschild MA, Schwid SR, Marek K, et al. (2008) Serum urate as a predictor of clinical and radiographic progression in Parkinson disease. Arch Neurol [Epub ahead of print]

  44. Waragai M, Nakai M, Wei J, et al. (2007) Plasma levels of DJ-1 as a possible marker for progression of sporadic Parkinson’s disease. Neurosci Lett 425(1): 18–22

    Article  PubMed  CAS  Google Scholar 

  45. Borghi R, Marchese R, Negro A, et al. (2000) Full length alphasynuclein is present in cerebrospinal fluid from Parkinson’s disease and normal subjects. Neurosci Lett 287(1): 65–7

    Article  PubMed  CAS  Google Scholar 

  46. Bibl M, Mollenhauer B, Esselmann H, et al. (2006) CSF amyloid-beta-peptides in Alzheimer’s disease, dementia with Lewy bodies and Parkinson’s disease dementia. Brain 129(Pt 5): 1177–87

    Article  PubMed  Google Scholar 

  47. Abdo WF, Bloem BR, Van Geel WJ, et al. (2007) CSF neurofilament light chain and tau differentiate multiple system atrophy from Parkinson’s disease. Neurobiol Aging 28(5): 742–7

    Article  PubMed  CAS  Google Scholar 

  48. Abdo WF, De Jong D, Hendricks JC, et al. (2004) Cerebrospinal fluid analysis differentiates multiple system atrophy from Parkinson’s disease. Mov Disord 19(5): 571–9

    Article  PubMed  Google Scholar 

  49. Abe T, Isobe C, Murata T, et al. (2003) Alteration of 8-hydroxyguanosine concentrations in the cerebrospinal fluid and serum from patients with Parkinson’s disease. Neurosci Lett 336(2): 105–8

    Article  PubMed  CAS  Google Scholar 

  50. Isobe C, Murata T, Sato C, Terayama Y (2007) Increase of oxidized/total coenzyme Q-10 ratio in cerebrospinal fluid in patients with Parkinson’s disease. J Clin Neurosci 14(4): 340–3

    Article  PubMed  CAS  Google Scholar 

  51. Waragai M, Wei J, Fujita M, et al. (2006) Increased level of DJ-1 in the cerebrospinal fluids of sporadic Parkinson’s disease. Biochem Biophys Res Commun 345(3): 967–72

    Article  PubMed  CAS  Google Scholar 

  52. Abdi F, Quinn JF, Jankovic J, et al. (2006) Detection of biomarkers with a multiplex quantitative proteomic platform in cerebrospinal fluid of patients with neurodegenerative disorders. J Alzheimers Dis 9(3): 293–34

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lebouvier, T., Chaumette, T., Damier, P. et al. Apport des biomarqueurs au diagnostic de la maladie de Parkinson. Bio trib. mag. 28, 34–37 (2008). https://doi.org/10.1007/BF03001644

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF03001644

Mots clés

Keywords

Navigation