Skip to main content
Log in

Review of “Minitransplantation”: Nonmyeloablative Allogeneic Hematopoietic Stem Cell Transplantation

  • Published:
International Journal of Hematology Aims and scope Submit manuscript

Abstract

Nonmyeloablative conditioning regimens for allogeneic hematopoietic stem cell transplantation (HSCT) have been developed over the past few years as important alternatives to conventional myeloablative conditioning regimens for older or medically unfit patients with hematologic malignancies, as well as for patients with certain nonmalignant hematologic diseases or renal cell cancer. This review summarizes the biological background, current clinical applications, and indications for this novel treatment approach for treating hematologic malignancies. Historically, allogeneic HSCT has been based on the use of cytotoxic and myeloablative chemotherapy and radiotherapy conditioning regimens that are intended both to eradicate malignancy and to eliminate host hematopoiesis and immune cells. Such a regimen was followed by the infusion of histocompatible donor marrow or peripheral blood stem cells to rescue hematopoiesis. For older patients or for those who had previously been treated with intensive chemotherapy or radiotherapy, the toxicity of myeloablative conditioning was prohibitive. Although most hematologic malignancies occur in older patients, these patients had not been previously eligible for the potentially curative therapy offered by allogeneic HSCT. Based in large part on preclinical studies with the dog model of HSCT and on an improved understanding of the mechanisms for controlling immune modulation, successful development of nonmyeloablative conditioning regimens for clinical use has occurred. Clear evidence of a therapeutic graft-versus-tumor effect mediated by allogeneic T-cells prompted an exploration for HSCT regimens that rely solely on nonmyeloablative immunosuppression to facilitate allogeneic engraftment. In lieu of intensive chemoradiotherapy before transplantation, engrafted donor T-cells are used to accomplish the task of eradicating the host’s malignant cells. We review the updated results of an ongoing multicenter study to investigate the safety and efficacy of nonmyeloablative HSCT using a regimen of 2 Gy total body irradiation in patients with advanced hematologic malignancies who were ineligible for conventional myeloablative conditioning. In addition, we review the results of reduced-intensity HSCT trials from other transplantation centers.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Thomas ED, Storb R, Clift RA, et al. Bone-marrow transplantation.N Engl J Med. 1975;292:832–843, 895–902.

    Article  CAS  PubMed  Google Scholar 

  2. Burchenal JH, Oettgen HF, Holmberg EAD, Hemphill SC, Reppert JA. Effect of total body irradiation on the transplantability of mouse leukemias.Cancer Res. 1960;20:425.

    PubMed  CAS  Google Scholar 

  3. Barnes DWH, Corp MJ, Loutit JF, Neal FE. Treatment of murine leukaemia with x-rays and homologous bone marrow: preliminary communication.Br Med J. 1956;2:626–627.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Mathé G, Amiel JL, Schwarzenberg L, Catton A, Schneider M. Adoptive immunotherapy of acute leukemia: experimental and clinical results.Cancer Res. 1965;25:1525–1531.

    PubMed  Google Scholar 

  5. Weiden PL, Flournoy N, Thomas ED, et al. Antileukemic effect of graft-versus-host disease in human recipients of allogeneic-marrow grafts.N Engl J Med. 1979;300:1068–1073.

    Article  CAS  PubMed  Google Scholar 

  6. Weiden PL, Sullivan KM, Flournoy N, Storb R, Thomas ED. Antileukemic effect of chronic graft-versus-host disease: contribution to improved survival after allogeneic marrow transplantation.N Engl J Med. 1981;304:1529–1533.

    Article  CAS  PubMed  Google Scholar 

  7. Butturini A, Bortin MM, Gale RP. Graft-versus-leukemia following bone marrow transplantation.Bone Marrow Transplant. 1987;2:233–242.

    PubMed  CAS  Google Scholar 

  8. Kersey JH, Weisdorf D, Nesbit ME, et al. Comparison of autologous and allogeneic bone marrow transplantation for treatment of high-risk refractory acute lymphoblastic leukemia.N Engl J Med. 1987;317:461–467.

    Article  CAS  PubMed  Google Scholar 

  9. Weisdorf DJ, Nesbit ME, Ramsay NKC, et al. Allogeneic bone marrow transplantation for acute lymphoblastic leukemia in remission: prolonged survival associated with acute graft-versus-host disease.J Clin Oncol. 1987;5:1348–1355.

    Article  CAS  PubMed  Google Scholar 

  10. Sullivan KM, Weiden PL, Storb R, et al. Influence of acute and chronic graft-versus-host disease on relapse and survival after bone marrow transplantation from HLA-identical siblings as treatment of acute and chronic leukemia.Blood. 1989;73:1720–1728.

    PubMed  CAS  Google Scholar 

  11. Horowitz MM, Gale RP, Sondel PM, et al. Graft-versus-leukemia reactions after bone marrow transplantation.Blood. 1990;75:555–562.

    CAS  PubMed  Google Scholar 

  12. Storb R, Doney KC, Thomas ED, et al. Marrow transplantation with or without donor buffy coat cells for 65 transfused aplastic anemia patients.Blood. 1982;59:236–246.

    CAS  PubMed  Google Scholar 

  13. Sullivan KM, Storb R, Buckner CD, et al. Graft-versus-host disease as adoptive immunotherapy in patients with advanced hematologic neoplasms. N Engl J Med. 1989;320:828–834.

    Article  CAS  PubMed  Google Scholar 

  14. Kolb HJ, Mittermüller J, Clemm C, et al. Donor leukocyte transfusions for treatment of recurrent chronic myelogenous leukemia in marrow transplant patients.Blood. 1990;76:2462–2465.

    CAS  PubMed  Google Scholar 

  15. Porter DL, Roth MS, McGarigle C, Ferrara JLM, Antin JH. Induction of graft-versus-host disease as immunotherapy for relapsed chronic myeloid leukemia.N Engl J Med. 1994;330:100–106.

    Article  CAS  PubMed  Google Scholar 

  16. Kolb HJ, Schattenberg A, Goldman JM, et al. Graft-versusleukemia effect of donor lymphocyte transfusions in marrow grafted patients: European Group for Blood and Marrow Transplantation Working Party Chronic Leukemia.Blood. 1995;86:2041–2050.

    CAS  PubMed  Google Scholar 

  17. Giralt S, Hester J, Huh Y, et al. CD8-depleted donor lymphocyte infusion as treatment for relapsed chronic myelogenous leukemia after allogeneic bone marrow transplantation.Blood. 1995;86:4337–4343.

    PubMed  CAS  Google Scholar 

  18. Collins RH Jr, Shpilberg O, Drobyski WR, et al. Donor leukocyte infusions in 140 patients with relapsed malignancy after allogeneic bone marrow transplantation.J Clin Oncol. 1997;15:433–444.

    Article  PubMed  Google Scholar 

  19. Mackinnon S, Papadopoulos EB, Carabasi MH, et al. Adoptive immunotherapy evaluating escalating doses of donor leukocytes for relapse of chronic myeloid leukemia after bone marrow transplantation: separation of graft-versus-leukemia responses from graft-versus-host disease.Blood. 1995;86:1261–1268.

    PubMed  CAS  Google Scholar 

  20. Wright SE, Thomas ED, Buckner CD, et al. Experience with second marrow transplants.Exp Hematol. 1976;4:221–226.

    PubMed  CAS  Google Scholar 

  21. Atkinson K, Biggs J, Concannon A, Dodds A, Dale B, Norman J. Second marrow transplants for recurrence of haematological malignancy.Bone Marrow Transplant. 1986;1:159–166.

    PubMed  CAS  Google Scholar 

  22. Blume KG, Forman SJ. High dose busulfan/etoposide as a preparatory regimen for second bone marrow transplants in hematologic malignancies.Blut. 1987;55:49–53.

    Article  CAS  PubMed  Google Scholar 

  23. Champlin RE, Ho WG, Lenarsky C, et al. Successful second bone marrow transplants for treatment of acute myelogenous leukemia or acute lymphoblastic leukemia.Transplant Proc. 1985;17:496–499.

    Google Scholar 

  24. Radich JP, Sanders JE, Buckner CD, et al. Second allogeneic marrow transplantation for patients with recurrent leukemia after initial transplant with total-body irradiation-containing regimens.J Clin Oncol. 1993;11:304–313.

    Article  CAS  PubMed  Google Scholar 

  25. Mrsic M, Horowitz MM, Atkinson K, et al. Second HLA-identical sibling transplants for leukemia recurrence.Bone Marrow Transplant. 1992;9:269–275.

    PubMed  CAS  Google Scholar 

  26. Kolb H-J. Management of relapse after hematopoietic cell transplantation. In: Thomas ED, Blume KG, Forman SJ, eds. Hematopoietic Cell Transplantation. 2nd ed. Boston, Mass: Blackwell Science; 1999:929–936.

    Google Scholar 

  27. Rondon G, Giralt S, Huh Y, et al. Graft-versus-leukemia effect after allogeneic bone marrow transplantation for chronic lymphocytic leukemia.Bone Marrow Transplant. 1996;18:669–672.

    PubMed  CAS  Google Scholar 

  28. Lokhorst HM, Schattenberg A, Cornelissen JJ, et al. Donor lymphocyte infusions for relapsed multiple myeloma after allogeneic stem-cell transplantation: predictive factors for response and long-term outcome.J Clin Oncol. 2000;18:3031–3037.

    Article  CAS  PubMed  Google Scholar 

  29. Salama M, Nevill T, Marcellus D, et al. Donor leukocyte infusions for multiple myeloma.Bone Marrow Transplant. 2000;26:1179–1184.

    Article  CAS  PubMed  Google Scholar 

  30. Tricot G, Vesole DH, Jagannath S, Hilton J, Munshi N, Barlogie B. Graft-versus-myeloma effect: proof of principle.Blood. 1996;87:1196–1198.

    PubMed  CAS  Google Scholar 

  31. Lokhorst HM, Schattenberg A, Cornelissen JJ, Thomas LLM, Verdonck LF. Donor leukocyte infusions are effective in relapsed multiple myeloma after allogeneic bone marrow transplantation.Blood. 1997;90:4206–4211.

    PubMed  CAS  Google Scholar 

  32. Aschan J, Lonnqvist B, Ringden O, Kumlien G, Gahrton G. Graftversus-myeloma effect [letter].Lancet. 1996;348:346.

    Article  CAS  PubMed  Google Scholar 

  33. Alyea EP, Soiffer RJ, Canning C, et al. Toxicity and efficacy of defined doses of CD4+ donor lymphocytes for treatment of relapse after allogeneic bone marrow transplant.Blood. 1998;91:3671–3680.

    PubMed  CAS  Google Scholar 

  34. Andreani M, Manna M, Lucarelli G, et al. Persistence of mixed chimerism in patients transplanted for the treatment of thalassemia.Blood. 1996;87:3494–3499.

    PubMed  CAS  Google Scholar 

  35. Walters MC, Patience M, Leisenring W, et al. Bone marrow transplantation for sickle cell disease.N Engl J Med. 1996;335:369–376.

    Article  CAS  PubMed  Google Scholar 

  36. Martin PJ. Overview of marrow transplantation immunology. In: Thomas ED, Blume KG, Forman SJ, eds. Hematopoietic Cell Transplantation. 2nd ed. Boston, Mass: Blackwell Science; 1999:19–27.

    Google Scholar 

  37. Bryant E, Martin PJ. Documentation of engraftment and characterization of chimerism following hematopoietic cell transplantation. In: Thomas ED, Blume KG, Forman SJ, eds. Hematopoietic Cell Transplantation. 2nd ed. Boston, Mass: Blackwell Science; 1999:197–206.

    Google Scholar 

  38. Alizadeh M, Bernard M, Danic B, et al. Quantitative assessment of hematopoietic chimerism after bone marrow transplantation by real-time quantitative polymerase chain reaction.Blood. 2002;99:4618–4625.

    Article  CAS  PubMed  Google Scholar 

  39. Storb R, Raff RF, Graham T, et al. Marrow toxicity of fractionated versus single dose total body irradiation is identical in a canine model.Int J Radial Oncol Biol Phys. 1993;26:275–283.

    Article  CAS  Google Scholar 

  40. Storb R, Raff RF, Appelbaum FR, et al. What radiation dose for DLA-identical canine marrow grafts?Blood. 1988;72:1300–1304.

    PubMed  CAS  Google Scholar 

  41. Storb R, Raff RF, Appelbaum FR, et al. DLA-identical bone marrow grafts after low-dose total body irradiation: the effect of canine recombinant hematopoietic growth factors.Blood. 1994;84:3558–3566.

    PubMed  CAS  Google Scholar 

  42. Yu C, Storb R, Mathey B, et al. DLA-identical bone marrow grafts after low-dose total body irradiation: effects of high-dose corticosteroids and cyclosporine on engraftment.Blood. 1995;86:4376–4381.

    PubMed  CAS  Google Scholar 

  43. Storb R, Yu C, Wagner JL, et al. Stable mixed hematopoietic chimerism in DLA-identical littermate dogs given sublethal total body irradiation before and pharmacological immunosuppression after marrow transplantation.Blood. 1997;89:3048–3054.

    CAS  PubMed  Google Scholar 

  44. Sollinger HW. Update on preclinical and clinical experience with mycophenolate mofetil.Transplant Proc. 1996;28(supp 1):24–29.

    PubMed  CAS  Google Scholar 

  45. Sollinger HW. Mycophenolate mofetil for the prevention of acute rejection in primary cadaveric renal allograft recipients: U.S. Renal Transplant Mycophenolate Mofetil Study Group.Transplantation. 1995;60:225–232.

    Article  CAS  PubMed  Google Scholar 

  46. Shapiro R, Jordan ML, Scantlebury VP, et al. A prospective, randomized trial to compare tacrolimus and prednisone with and without mycophenolate mofetil in patients undergoing renal transplantation: first report.J Urol. 1998;160:1982–1985.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Mathew TH. A blinded, long-term, randomized multicenter study of mycophenolate mofetil in cadaveric renal transplantation: results at three years.Transplantation. 1998;65:1450–1454.

    Article  CAS  PubMed  Google Scholar 

  48. U.S. Renal Transplant Mycophenolate Mofetil Study Group. Mycophenolate mofetil in cadaveric renal transplantation.Am J Kidney Dis. 1999;34:296–303.

    Article  Google Scholar 

  49. European Mycophenolate Mofetil Cooperative Study Group. Mycophenolate mofetil in renal transplantation: 3-year results from the placebo-controlled trial.Transplantation. 1999;68:391–396.

    Article  Google Scholar 

  50. Jain AB, Hamad I, Rakela J, et al. A prospective randomized trial of tacrolimus and prednisone versus tacrolimus, prednisone, and mycophenolate mofetil in primary adult liver transplant recipients: an interim report.Transplantation. 1998;66:1395–1398.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Fisher RA, Ham JM, Marcos A, et al. A prospective randomized trial of mycophenolate mofetil with neoral or tacrolimus after orthotopic liver transplantation.Transplantation. 1998;66:1616–1621.

    Article  CAS  PubMed  Google Scholar 

  52. Mookerjee B, Altomonte V, Vogelsang G. Salvage therapy for refractory chronic graft-versus-host disease with mycophenolate mofetil and tacrolimus.Bone Marrow Transplant. 1999;24:517–520.

    Article  CAS  PubMed  Google Scholar 

  53. Yu C, Seidel K, Nash RA, et al. Synergism between mycophenolate mofetil and cyclosporine in preventing graft-versus-host disease among lethally irradiated dogs given DLA-nonidentical unrelated marrow grafts.Blood. 1998;91:2581–2587.

    PubMed  CAS  Google Scholar 

  54. Storb R, Yu C, Barnett T, et al. Stable mixed hematopoietic chimerism in dog leukocyte antigen-identical littermate dogs given lymph node irradiation before and pharmacologic immunosuppression after marrow transplantation.Blood. 1999;94:1131–1136.

    CAS  PubMed  Google Scholar 

  55. Storb R, Yu C, Zaucha JM, et al. Stable mixed hematopoietic chimerism in dogs given donor antigen, CTLA4Ig, and 100 cGy total body irradiation before and pharmacologic immunosuppression after marrow transplant.Blood. 1999;94:2523–2529.

    PubMed  CAS  Google Scholar 

  56. Allison JP, Krummel MF. The yin and yang of T cell costimulation.Science. 1995;270:932–933.

    Article  CAS  PubMed  Google Scholar 

  57. Lee KM, Chuang E, Griffin M, et al. Molecular basis of T cell inactivation by CTLA-4.Science. 1998;282:2263–2266.

    Article  CAS  PubMed  Google Scholar 

  58. Shahinian A, Pfeffer K, Lee KP, et al. Differential T cell costimulatory requirements in CD28-deficient mice.Science. 1993;261:609–612.

    Article  CAS  PubMed  Google Scholar 

  59. Kundig TM, Shahinian A, Kawai K, et al. Duration of TCR stimulation determines costimulatory requirement of T cells.Immunity. 1996;5:41–52.

    Article  CAS  PubMed  Google Scholar 

  60. Judge TA, Tang A, Spain LM, Deans-Gratiot J, Sayegh MH, Turka LA. The in vivo mechanism of action of CTLA4Ig.J Immunol. 1996;156:2294–2299.

    PubMed  CAS  Google Scholar 

  61. Gribben JG, Guinan EC, Boussiotis VA, et al. Complete blockade of B7 family-mediated costimulation is necessary to induce human alloantigen-specific anergy: a method to ameliorate graft-versus-host disease and extend the donor pool.Blood. 1996;87:4887–4893.

    PubMed  CAS  Google Scholar 

  62. Gribben JG, Freeman GJ, Boussiotis VA, et al. CTLA4 mediates antigen-specific apoptosis of human T cells.Proc Natl Acad Sci U S A. 1995;92:811–815.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. McSweeney PA, Niederwieser D, Shizuru JA, et al. Hematopoietic cell transplantation in older patients with hematologic malignancies: replacing high-dose cytotoxic therapy with graft-versus-tumor effects.Blood. 2001;97:3390–3400.

    Article  CAS  PubMed  Google Scholar 

  64. Weissinger F, Sandmaier BM, Maloney DG, Bensinger WI, Gooley T, Storb R. Decreased transfusion requirements for patients receiving nonmyeloablative compared with conventional peripheral blood stem cell transplants from HLA-identical siblings.Blood. 2001;98:3584–3588.

    Article  CAS  PubMed  Google Scholar 

  65. Sandmaier BM, Maloney DG, Gooley T, et al. Nonmyeloablative hematopoietic stem cell transplants (HSCT) from HLA-matched related donors for patients with hematologic malignancies: clinical results of a TBI-based conditioning regimen [abstract].Blood. 2001;98(part 1):742a-743a. Abstract 3093.

    Google Scholar 

  66. Feinstein LC, Sandmaier BM, Hegenbart U, et al. Nonmyeloablative allografting from HLA-identical sibling donors for treatment of acute myeloid leukemia in first complete remission. BrJ Haema- tol. In press.

  67. Sandmaier BM, Hegenbart U, Shizuru J, et al. Nonmyeloablative hematopoietic stem cell transplantation (HSCT) from HLA-identical siblings for treatment of chronic myelogenous leukemia (CML): induction of molecular remissions [abstract].Blood. 2001; 98(part 2):371b. Abstract 5259.

    Google Scholar 

  68. Maloney DG, Sahebi F, Stockerl-Goldstein KE, et al. Combining an allogeneic graft-vs-myeloma effect with high-dose autologous stem cell rescue in the treatment of multiple myeloma [abstract].Blood. 2001;98(part 1):434a-435a. Abstract 1822.

    Google Scholar 

  69. Maris MB, Sandmaier BM, Niederwieser D, et al. The effect of donor lymphocyte infusions (DLI) on chimerism and persistent disease after nonmyeloablative hematopoietic stem cell transplant (HSCT) [abstract].Blood. 2000;96(part 1):477a. Abstract 2053.

    Google Scholar 

  70. Maris M, Niederwieser D, Sandmaier B, et al. Nonmyeloablative hematopoietic stem cell transplants (HSCT) using 10/10 HLA antigen matched unrelated donors (URDs) for patients with advanced hematologic malignancies ineligible for conventional HSCT [abstract].Blood 2001;98(part 1):858a. Abstract 3563.

    Google Scholar 

  71. Niederwieser D, Maris M, Shizuru JA, et al. Low-dose total body irradiation (TBI) and fludarabine followed by hematopoietic cell transplantation (HCT) from HLA-matched or mismatched unrelated donors and postgrafting immunosuppression with cyclosporine and mycophenolate mofetil (MMF) can induce durable complete chimerism and sustained remissions in patients with hematological diseases. Blood. In press.

  72. Kottaridis PD, Milligan DW, Chopra R, et al. In vivo CAMPATH- 1H prevents graft-versus-host disease following nonmyeloablative stem cell transplantation.Blood. 2000;96:2419–2425.

    PubMed  CAS  Google Scholar 

  73. Peggs KS, Mahendra P, Milligan DW, et al. Non-myeloablative transplantation using matched unrelated donors-in vivo Campath-1H limits graft versus host disease [abstract].Blood. 2000;96(part 1):841a. Abstract 3634.

    Google Scholar 

  74. Spitzer TR, McAfee S, Sackstein R, et al. Haploidentical donor bone marrow transplantation (BMT) for advanced hematologic malignancy (HM) following non-myeloablative preparative therapy: role of in vivoT-cell depletion with anti-thymocyte globulin or anti-CD2 monoclonal antibody therapy (medi-507) [abstract].Blood. 2000;96(part 1):841a. Abstract 3633.

    Google Scholar 

  75. Giralt S, Estey E, Albitar M, et al. Engraftment of allogeneic hematopoietic progenitor cells with purine analog-containing chemotherapy: harnessing graft-versus-leukemia without myeloab- lative therapy.Blood. 1997;89:4531–4536.

    PubMed  CAS  Google Scholar 

  76. Khouri I, Keating MJ, Przepiorka D, et al. Engraftment and induction of GVL with fludarabine (FAMP)-based non-ablative preparative regimen in patients with chronic lymphocytic leukemia (CLL) and lymphoma [abstract].Blood. 1996;88:301a. Abstract 1194.

    Google Scholar 

  77. Khouri IF, Keating M, Körbling M, et al. Transplant-lite: induction of graft-versus-malignancy using fludarabine-based nonablative chemotherapy and allogeneic blood progenitor-cell transplantation as treatment for lymphoid malignancies.J Clin Oncol. 1998;16:2817–2824.

    Article  CAS  PubMed  Google Scholar 

  78. Khouri IF, Saliba RM, Giralt SA, et al. Nonablative allogeneic hematopoietic transplantation as adoptive immunotherapy for indolent lymphoma: low incidence of toxicity, acute graft-versus-host disease, and treatment-related mortality.Blood. 2001;98:3595–3599.

    Article  CAS  PubMed  Google Scholar 

  79. Giralt S, Thall PF, Khouri I, et al. Melphalan and purine analog- containing preparative regimens: reduced-intensity conditioning for patients with hematologic malignancies undergoing allogeneic progenitor cell transplantation.Blood. 2001;97:631–637.

    Article  CAS  PubMed  Google Scholar 

  80. Slavin S, Nagler A, Naparstek E, et al. Nonmyeloablative stem cell transplantation and cell therapy as an alternative to conventional bone marrow transplantation with lethal cytoreduction for the treatment of malignant and nonmalignant hematologic diseases.Blood. 1998;91:756–763.

    CAS  PubMed  Google Scholar 

  81. Nagler A, Aker M, Or R, et al. Low-intensity conditioning is sufficient to ensure engraftment in matched unrelated bone marrow transplantation.Exp Hematol. 2001;29:362–370.

    Article  CAS  PubMed  Google Scholar 

  82. Bornhauser M, Thiede C, Platzbecker U, et al. Dose-reduced conditioning and allogeneic hematopoietic stem cell transplantation from unrelated donors in 42 patients.Clin Cancer Res. 2001;7:2254–2262.

    PubMed  CAS  Google Scholar 

  83. Sykes M, Preffer F, McAfee S, et al. Mixed lymphohaemopoietic chimerism and graft-versus-lymphoma effects after non-myeloablative therapy and HLA-mismatched bone-marrow transplantation.Lancet. 1999;353:1755–1759.

    Article  CAS  PubMed  Google Scholar 

  84. Spitzer TR, McAfee S, Sackstein R, et al. Intentional induction of mixed chimerism and achievement of antitumor responses after nonmyeloablative conditioning therapy and HLA-matched donor bone marrow transplantation for refractory hematologic malignancies.Biol Blood Marrow Transplant. 2000;6:309–320.

    Article  CAS  PubMed  Google Scholar 

  85. Childs R, Clave E, Contentin N, et al. Engraftment kinetics after nonmyeloablative allogeneic peripheral blood stem cell transplantation: full donor T-cell chimerism precedes alloimmune responses.Blood. 1999;94:3234–3241.

    PubMed  CAS  Google Scholar 

  86. Childs R, Chernoff A, Contentin N, et al. Regression of metastatic renal-cell carcinoma after nonmyeloablative allogeneic peripheral- blood stem-cell transplantation.N Engl J Med. 2000;343:750–758.

    Article  CAS  PubMed  Google Scholar 

  87. Chakraverty R, Peggs K, Chopra R, et al. Limiting transplantation-related mortality following unrelated donor stem cell transplantation by using a nonmyeloablative conditioning regimen.Blood. 2002;99:1071–1078.

    Article  CAS  PubMed  Google Scholar 

  88. Warren EH, Gavin M, Greenberg PD, Riddell SR. Minor histo-compatibility antigens as targets for T-cell therapy after bone marrow transplantation.Curr Opin Hematol. 1998;5:429–433.

    Article  CAS  PubMed  Google Scholar 

  89. Greenberg PD, Riddell SR. Cellular therapy. In: Austen KF, Burakoff SJ, Rosen FS, Strom TB, eds. Therapeutic Immunology. Malden, Mass: Blackwell Science; 2001:550–573.

    Google Scholar 

  90. Junghanss C, Marr KA, Carter RA, et al. Incidence of bacterial and fungal infections after nonmyeloablative compared to myeloablative allogeneic hematopoietic stem cell transplantation (HSCT) [abstract].Blood. 2001;98(part 1):479a. Abstract 2000.

    Google Scholar 

  91. Junghanss C, Boeckh M, Carter RA, et al. Incidence and outcome of cytomegalovirus infections following nonmyeloablative compared with myeloablative allogeneic stem cell transplantation, a matched control study.Blood. 2002;99:1978–1985.

    Article  CAS  PubMed  Google Scholar 

  92. Morecki S, Gelfand Y, Nagler A, et al. Immune reconstitution following allogeneic stem cell transplantation in recipients conditioned by low intensity vs myeloablative regimen.Bone Marrow Transplant. 2001;28:243–249.

    Article  CAS  PubMed  Google Scholar 

  93. Mohty M, Faucher C, Vey N, et al. High rate of secondary viral and bacterial infections in patients undergoing allogeneic bone marrow mini-transplantation.Bone Marrow Tranplant. 2000;26:251–255.

    Article  CAS  Google Scholar 

  94. Savage WJ, Bleesing JJH, Douek D, et al. Lymphocyte reconstitution following non-myeloablative hematopoietic stem cell transplantation follows two patterns depending on age and donor/recipient chimerism.Bone Marrow Transplant. 2001;28:463–471.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to George E. Georges.

About this article

Cite this article

Georges, G.E., Storb, R. Review of “Minitransplantation”: Nonmyeloablative Allogeneic Hematopoietic Stem Cell Transplantation. Int J Hematol 77, 3–14 (2003). https://doi.org/10.1007/BF02982597

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02982597

Key words

Navigation