Skip to main content
Log in

Uncertainty calculation in life cycle assessments

A combined model of simulation and approximation

  • Published:
The International Journal of Life Cycle Assessment Aims and scope Submit manuscript

Abstract

Goal and Background

Uncertainty is commonly not taken into account in LCA studies, which downgrades their usability for decision support. One often stated reason is a lack of method. The aim of this paper is to develop a method for calculating the uncertainty propagation in LCAs in a fast and reliable manner.

Approach

The method is developed in a model that reflects the calculation of an LCA. For calculating the uncertainty, the model combines approximation formulas and Monte Carlo Simulation. It is based on virtual data that distinguishes true values and random errors or uncertainty, and that hence allows one to compare the performance of error propagation formulas and simulation results. The model is developed for a linear chain of processes, but extensions for covering also branched and looped product systems are made and described.

Results

The paper proposes a combined use of approximation formulas and Monte Carlo simulation for calculating uncertainty in LCAs, developed primarily for the sequential approach. During the calculation, a parameter observation controls the performance of the approximation formulas. Quantitative threshold values are given in the paper. The combination thus transcends drawbacks of simulation and approximation.

Conclusions and Outlook

The uncertainty question is a true jigsaw puzzle for LCAs and the method presented in this paper may serve as one piece in solving it. It may thus foster a sound use of uncertainty assessment in LCAs. Analysing a proper management of the input uncertainty, taking into account suitable sampling and estimation techniques; using the approach for real case studies, implementing it in LCA software for automatically applying the proposed combined uncertainty model and, on the other hand, investigating about how people do decide, and should decide, when their decision relies on explicitly uncertain LCA outcomes-these all are neighbouring puzzle pieces inviting to further work.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Kahnemann D, Slovic P, Tversky A (Eds) (1982): Judgement under Uncertainty, Heuristics and Biases. Cambridge University Press

  2. Ciroth A (2003): Uncertainty calculation for LCI data: Reasons for, against, and an efficient and flexible approach for doing it. Presentation, International Workshop on Quality of LCI Data, 20–21 October 2003, Forschungszentrum Karlsruhe http://www.lci-network.de/cms/content/cache/offonce/pid/468

  3. http://www.spold.org/

  4. http://www.globalspine.com/LCA/

  5. Weidema B, Wesnaes MS (1996): Data quality management for life cycle inventories-An example for using data quality indicators. J Cleaner Prod 4 (3-4) 167–174

    Article  Google Scholar 

  6. Huijbregts MAJ, Norris G, Bretz R, Ciroth A, Maurice B, von Bahr B, Weidema B, de Beaufort ASH (2001): Framework for Modelling Data Uncertainty in Life Cycle Inventories. Int J LCA 6 (3) 127–131

    Article  Google Scholar 

  7. Huijbregts MAJ (2001): Uncertainty and variability in environmental life-cycle assessment. Academisch Proefschrift, Univ. van Amsterdam, Amsterdam

    Google Scholar 

  8. Ciroth A (2000): A new model for the propagation of errors in LCA, shown in a case study. Platform Presentation, 8th SETAC case study symposium, Brussels

    Google Scholar 

  9. Canter KG, Kennedy DJ, Montgomery DC, Keats JB, Carlyle WM (2002): Screening Stochastic Life Cycle Assessment Inventory Models. Int J LCA 7 (1) 18–26

    Article  Google Scholar 

  10. Le Téno JF (1999): Visual Data Analysis and Decision Support Models for Non-Deterministic LCA. Int J LCA 4 (1) 41–47

    Article  Google Scholar 

  11. Pohl Chr, Ros M (1996): Sind Ökobilanzen zu präzise? In: Intelligente Methoden zur Verarbeitung von Umweltinformation. 2. Bremer KI-Pfingstworkshop (Tagungsband), metropolis, Marburg, pp 121–136

    Google Scholar 

  12. Heijungs R (1996): Identification of key issues for further investigation in improving the reliability of life-cycle assessments. J Cleaner Prod 4 (3-4) 159–166

    Article  Google Scholar 

  13. Sangwon Suh (2003): personal communication, 11 June 03

  14. Ecospold data format http://www.ecoinvent.org/en/pdf/Documentation EcoSpoldl,2.pdf

  15. McCleese D, LaPuma P (2002): Using Monte Carlo Simulation in Life Cycle Assessment for Electric and Internal Combustion Vehicles. Int J LCA 7 (4) 230–236

    Article  CAS  Google Scholar 

  16. Ciroth A (2001): Fehlerrechnung in Ökobilanzen. Dissertation TU Berlin 2001 http://edocs.tu-berlin.de/diss/2001/ciroth andreas.htm

  17. Bevington R, Robinson DK (1992): Data Reduction and Error Analysis for the Physical Sciences. WCB/McGrawHill, Boston

    Google Scholar 

  18. Bacchini P, Bader HP (1996): Regionaler Stoffhaushalt. Spektrum Akademischer Verlag, Heidelberg Berlin Oxford

    Google Scholar 

  19. Wolf H (1979): Ausgleichungsrechnung H. Ferd. Dummlers Verlag, Bonn

    Google Scholar 

  20. Höpcke W (1980): Fehlerlehre und Ausgleichsrechnung, Walter de Gruyter, Berlin New York

    Google Scholar 

  21. Vose D (1996): Quantitative Risk Analysis: A Guide to Monte Carlo Simulation Modelling. John Wiley & Sons, Chichester, New York, Brisbane, Toronto, Singapore

    Google Scholar 

  22. Fleischer G, Schmidt WP (1995): Life cycle assessment. In: Ullmann’s Encyclopedia of Industrial Chemistry, 5th Ed, Vol B8, Weinheim: VCH Verlagsgesellschaft, pp 585–600

    Google Scholar 

  23. Schmidt M (1996): Die Modellierung von Stoffrekursionen in Ökobilanzen. In: [24, pp 97–117]

    Google Scholar 

  24. Schmidt M, Schorb A (1996): Stoffstromanalysen in Ökobilanzen und Öko-Audits. Springer Verlag, Berlin Heidelberg

    Google Scholar 

  25. Moller A, Rolf A, Page B, Wohlgemuth V (2001): Foundations and Applications of Computer Based Material Flow Networks for Environmental Management. In: Rautenstrauch C Patig S (Eds) Environmental Information Systems in Industry und Public Administration. Hershey, PA USA, pp 379–396

    Google Scholar 

  26. Ciroth A (1998): Beispielhafte Anwendung der Iterativen Screening-Ökobilanz. Master thesis, Fachgebiet Abfallvermeidung der TU Berlin, Berlin

  27. Heijungs R, Suh S (2002): The computational Structure of Life Cycle Assessment. Kluwer Academic Publishers, Dordrecht

    Google Scholar 

  28. Hertwich EG, Hammitt JK (2001): A Decision-Analytic Framework for Impact Assessment, Part 2: Midpoints, Endpoints, and Criteria for Method Development. Int J LCA 6 (5) 265–272

    Article  CAS  Google Scholar 

  29. Matlab Function Reference; Function ‘inv’, Version 6.5, Release 13, 2002

  30. Golub G, Ortega JM (1993): Scientific Computing. Academic Press

  31. Ciroth A (2000): Einfluß der Reihenfolge von Bezugsszenariorechnung, Normierung und Charakterisierung auf das Ergebnis der LCA. In: Umweltschutz im neuen Jahrhundert, Festschrift anlässlich des 60. Geburtstages von Univ.-Prof. Dr.-Ing. Günter Fleischer, TK Verlag, Neuruppin, pp 95–104

    Google Scholar 

  32. Ross St, Evans D, Webber M (2002): How LCA Studies Deal with Uncertainty. Int J LCA 7 (1) 47–52

    Article  Google Scholar 

  33. Plinke E, Schonert M, Meckel H, Detzel A, Giegrich J, Fehrenbach H, Ostermayer A, Schorb A, Heinisch J, Luxenhofer K, Schmitz St, Umwelt-bundesamt (Hrsg) (2000): Ökobilanz für Getränkeverpackungen II, Hauptteil. UBA Texte 37/00, Berlin 2000, p 133: ‘Eine spezielle Methode zur Fehlerabschätzung in Ökobilanzen wurde bislang nicht entwickelt’ (a specific method for estimating uncertainties in LCAs is not developed yet)

  34. GaBi 4 Reference manual, 2003-01-29

  35. Björklund AE (2002): Survey of Approaches to Improve Reliability in LCA. Int J LCA 7 (2) 62–72

    Article  Google Scholar 

  36. Tukey JW (1977): Exploratory Data Analysis, Addison Wesley, Reading

  37. Ackermann R (1997): Ableitung von allgemein nutzbaren Sachbilanz-modulen-Untersuchungen am Beispiel der Aufbereitung von Altkunst-stoffen aus dem Dualen System. Dissertation TU Berlin

  38. Omlin M, Reichert P (1999): A comparison of techniques for the model prediction uncertainty. Ecological Modelling 115, 45–59

    Article  Google Scholar 

  39. Björk A (1996) Numerical Methods for Least Squares Problems. SIAM, Society of Industrial and Applied Mathematics, Philadelphia

    Google Scholar 

  40. Hartung J, Elpelt B (1989): Multivariate Statistik. Oldenbourg, München

  41. Laux H (1998): Entscheidungstheorie. Springer Verlag, Berlin

    Google Scholar 

  42. Kammen DM, Hassenzahl DM (1999): Should We Risk It? Exploring Environmental, Health and Technology Problem Solving, Princeton University Press, Princeton NJ

    Google Scholar 

  43. Morgan MG, Henrion M (1990): Uncertainty-A guide to dealing with uncertainty in quantitative risk and policy analysis. Cambridge University Press, NY

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Andreas Ciroth.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ciroth, A., Fleischer, G. & Steinbach, J. Uncertainty calculation in life cycle assessments. Int J LCA 9, 216–226 (2004). https://doi.org/10.1007/BF02978597

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02978597

Keywords

Navigation