Skip to main content
Log in

Enhanced production of succinic acid by metabolically engineeredEscherichia coli with amplified activities of malic enzyme and fumarase

  • Published:
Biotechnology and Bioprocess Engineering Aims and scope Submit manuscript

Abstract

Apfl ldhA double mutantEscherichia coli strain NZN111 was used to produce succinic acid by overexpressing theE. coli malic enzyme gene (sfcA). This strain, however, produced a large amount of malic acid as well as succinic acid. After the analyses of the metabolic pathways, thefumB gene encoding the anaerobic fumarase ofE. coli was co-amplified to solve the problem of malic acid accumulation. A plasmid, pTrcMLFu, was constructed, which contains an artificial operon (sfcA-fumB) under the control of the inducibletrc promoter. From the batch culture of recombinantE. coli NZN111 harboring pTrcMLFu, 7 g/L of succinic acid was produced from 20 g/L of glucose, with no accumulation of malic acid. From the metabolic flux analysis the strain was found under reducing power limiting conditions by severe reorientation of metabolic fluxes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Bunch, P. K., F. Mat-Jan, N. Lee, and D. P. Clark. (1997) TheldhA gene encoding the fermentative lactate dehydrogenase ofEscherichia coli.Microbiology 143: 187–195.

    CAS  Google Scholar 

  2. Zeikus, J. G. (1980) Chemical and fuel production by anaerobic bacteria.Annu. Rev. Microbiol. 34: 423–464.

    Article  CAS  Google Scholar 

  3. Clark, D. P. (1989) The fermentation pathways ofEscherichia coli.FEMS Microbiol. Rev. 63: 223–234.

    Article  CAS  Google Scholar 

  4. Lee, P. C., W. G. Lee, S. Kwon, S. Y. Lee, and H. N. Chang (1999) Succinic acid production byAnaerobiospirillum succiniciproducens: Effects of the H2/CO2 supplying and glucose concentration.Enzyme Microb. Technol. 24: 549–554.

    Article  CAS  Google Scholar 

  5. Lee, P. C., W. G. Lee, S. Y. Lee, H. N. Chang, and Y. K. Chang (2000) Fermentative production of succinic acid from glucose and corn steep liquor byAnaerobiospirillium succiniciproducens.Biotechnol. Bioprocess Eng. 5: 379–381.

    Article  CAS  Google Scholar 

  6. Neidhardt, F. C. (1996) Escherichia coliand Salmonella. ASM press, Washington DC, USA.

    Google Scholar 

  7. Lee, P. C., S. Y. Lee, S. H. Hong, and H. N. Chang (2002) Cloning and characterization of mannheimia succiniciproducens MBEL55E phosphoenolpyruvate carboxykinase (pckA) gene.Biotechnol. Bioprocess Eng. 7: 95–99.

    Article  CAS  Google Scholar 

  8. Bailey, J. E. (1991) Towards a science of metabolic engineering.Science 252: 1668–1674.

    Article  CAS  Google Scholar 

  9. Shimizu, H., N. Shimizu, and S. Shioya (2002) Roles of glucose and acetate as carbon sources inl-histidine production withBrevibacterium flavum FERM1564 revealed by metabolic flux analysis.Biotechnol. Bioprocess Eng. 7: 171–177.

    Article  CAS  Google Scholar 

  10. Lee, S. Y. and E. T. Papoutsakis (1999)Metabolic Engineering. Marcel Dekker, NY, USA.

    Google Scholar 

  11. Millard, C. S., T. Chao, J. C. Liao, and M. I. Donnelly (1996) Enhanced production of succinic acid by overexpression of phosphoenolpyruvate carboxylase inEscherichia coli.Appl. Environ. Microbiol. 62(5): 1808–1810.

    CAS  Google Scholar 

  12. Goldberg, I., K. Lonberg-Holm, E. A. Bagley, and B. Stieglitz (1983) Improved conversion of fumarate to succinate byEscherichia coli strains amplified for fumarate reductase.Appl. Environ. Microbiol. 45: 1834–1847.

    Google Scholar 

  13. Wang, X., C. S. Gong, and G. T. Tsao (1998) Bioconversion of fumaric acid to succinic acid by recombinantE. coli.Appl. Biochem. Biotechnol. 70–72: 919–928.

    Article  Google Scholar 

  14. Hong, S. H. and S. Y. Lee (2001) Metabolic flux analysis for succinic acid production by recombinantEscherichia coli with amplified malic enzyme activity.Biotechnol. Bioeng. 74: 89–95.

    Article  CAS  Google Scholar 

  15. Stols, L. and M. I. Donnelly (1997) Production of succinic acid through overexpression of NAD+-dependent malic enzyme in anEscherichia coli mutant.Appl. Environ. Microbiol. 63: 2695–2701.

    CAS  Google Scholar 

  16. Blattner, F. R., G. Plunkett, C. A. Bloch, N. T. Perna, V. Burland, M. Riley, J. Collado-Vides, J. D. Glasner, K. Rode, G. F. Mayhew, J. Gregor, N. W. Davis, H. A. Kirkpatrick, M. A. Goeden, D. J. Rose, B. Mau, and Y. Shao (1997) The complete genome sequence ofEscherichia coli K-12.Science 277: 1453–1462.

    Article  CAS  Google Scholar 

  17. Nielsen, J. and J. Villadsen (1994)Bioreaction Engineering Principles. Plenum Press, NY, USA.

    Google Scholar 

  18. Wong, H. H., R. J. van Wegen, J. Choi, S. Y. Lee, and A. P. J. Middelberg (1999) Metabolic analysis of poly(3-hydroxybutyrate) production by recombinantEscherichia coli.J. Microbiol. Biotechnol. 9: 593–603

    CAS  Google Scholar 

  19. Pramanik, J. and J. D. Keasling (1997) Stoichiometric model ofEscherichia coli metabolism: Incorporation of growth-rate dependent biomass composition and mechanistic energy requirements.Biotechnol. Bioeng. 56: 398–421.

    Article  CAS  Google Scholar 

  20. Lee, D. Y., H. S. Yun, S. Y. Lee, and S. Park (2003) MetaFluxNet: the management of metabolic reaction information and quantitative metabolic fluxanalysis.Bioinformatics 19: 2144–2146.

    Article  CAS  Google Scholar 

  21. Hong, S. H. and S. Y. Lee (2002) Importance of redox balance on the production of succinic acid by metabolically engineeredEscherichia coli.Appl. Microbiol. Biotechnol. 58: 286–290.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sang Yup Lee.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hong, S.H., Lee, S.Y. Enhanced production of succinic acid by metabolically engineeredEscherichia coli with amplified activities of malic enzyme and fumarase. Biotechnol. Bioprocess Eng. 9, 252–255 (2004). https://doi.org/10.1007/BF02942339

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02942339

Keywords

Navigation