Skip to main content
Log in

A predictor-corrector scheme for the numerical solution of the Boussinesq equation

  • Published:
Journal of Applied Mathematics and Computing Aims and scope Submit manuscript

Abstract

A fourth order in time and second order in space scheme using a finite-difference method is developed for the non-linear Boussinesq equation. For the solution of the resulting non-liner system a predictor-corrector pair is proposed. The method is analyzed for local truncation error and stability. The results of a number of numerical experiments for both the single and the double-soliton waves are given.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. M. J. Ablowitz and H. Segur, Solitons and the Inverse Scattering Transform, SIAM Studies in Applied Mathematics 4, Society for Industrial and Applied Mathematics, Philadelphia, 1981.

    MATH  Google Scholar 

  2. M. Affouf, R. E. Caflisch,A numerical study of reiman problems solutions and stability for a system of viscous conservation laws of mixed type, SIAM J. Appl. Math.51 no 3 (1991), 605–634.

    Article  MATH  MathSciNet  Google Scholar 

  3. D. Ambrosi,A new finite element scheme for the Boussinesq equations, Math. Models Methods Appl. Sci.7 no 2 (1997), 193–209.

    Article  MATH  MathSciNet  Google Scholar 

  4. A. V. Babin, A. Mahalov, B. Nicolaenko,Resonances and regularity for Boussinesq equations, Russian J. Math. Phys.4 no 4 (1996), 417–428.

    MATH  MathSciNet  Google Scholar 

  5. G. Boling, C. Fengxin,Finite-dimensional behavior of global attractors for weakly damped nonlinear Schrödinger-Boussinesq equations, Phys. D.93 no 1-2 (1996), 101–118.

    Article  MATH  MathSciNet  Google Scholar 

  6. A.G. Bratsos,The solution of the Boussinesq equation using the method of lines, Comput. Methods Appl. Mech. Engrg.157, (1998) 33–44.

    Article  MATH  MathSciNet  Google Scholar 

  7. A. G. Bratsos,A parametric scheme for the numerical solution of the Boussinesq equation Korean J. Comput. Appl. Math.8 no 1 (2001), 45–57.

    MATH  MathSciNet  Google Scholar 

  8. Y. Chen,A nonexistence theorem of small periodic traveling wave solutions to the generalized Boussinesq equation, Arch. Mech.49 no 4 (1997), 697–704.

    MATH  MathSciNet  Google Scholar 

  9. G. Chen, Z. Yang,Existence and non-existence of global solutions for a class of non-linear wave equations, Math. Meth. Appl. Sc.23 no 7 (2000), 615–631.

    Article  MATH  MathSciNet  Google Scholar 

  10. W. Choi, R. Camassa,Weakly nonlinear internal waves in a two-fluid system, J. Fluid Mechanics313 (1996), 83–103.

    Article  MATH  MathSciNet  Google Scholar 

  11. S.M. Choo,Pseudospectral method for the damped Boussinesq equation, Commun. Korean Math. Soc.13 no 4 (1998), 889–901.

    MATH  MathSciNet  Google Scholar 

  12. P. Daripa, W. Hua,A numerical study of an ill-posed Boussinesq equation arising in water waves and nonlinear lattices: filtering and regularization techniques, Appl. Math. Comput.101 no 2-3 (1999), 159–207.

    Article  MATH  MathSciNet  Google Scholar 

  13. Z.S. Feng,Traveling solitary solutions to the generalized Boussinesq equation, Wave Motion Vol37 no 1 (2003), 17–23.

    Article  MATH  MathSciNet  Google Scholar 

  14. D. Furihata,Finite-difference schemes for nonlinear wave equation that inherit energy conservation property. J. of Comp. and Appl. Math. Vol134 no 1-2 (2001), 37–57.

    Article  MATH  MathSciNet  Google Scholar 

  15. A. Godefroy,Blow up of solutions of a generalized Boussinesq equation, IMA J. Appl. Math.60 no 2 (1998), 123–138.

    Article  MATH  MathSciNet  Google Scholar 

  16. Y. Gao, S. Chen,Analysis of a rubber cone tensioned by a concentrated force, Mech. R. Com.28 no 1 (2001), 49–54.

    Article  MATH  Google Scholar 

  17. P. Gao, Z. Dai,Global attractor for weakly damped nonlinear Schrödinger-Boussinesq equations in an unbounded domain, J. Partial Differential Equations13 no 2 (2000), 97–110.

    MATH  MathSciNet  Google Scholar 

  18. C.S. Gardner, J.M. Greene, M.D. Kruskal, R.M. Miura,Method for solving the Kortewegde Vries equation, Phys. Rev. Lett.19 (1967), 1095–1097.

    Article  MATH  Google Scholar 

  19. M. Grasselli, S. Perotto,Space-time finite element approximation of Boussinesq equations, East-West J. Numer. Math.7 no 4 (1999), 283–306.

    MATH  MathSciNet  Google Scholar 

  20. B. Guo, X. Du,The behaviour of attractors for damped Schrödinger-Boussinesq equation, Commun. Nonlinear Sci. Numer. Simul.6 no 1 (2001), 54–60.

    Article  MATH  MathSciNet  Google Scholar 

  21. B.L. Guo, G.W. Yuan,Initial-boundary value problems for Boussinesq equations with L p data, Chinese Ann. Math. Ser. A17 no 5 (1996), 595–606.

    MATH  MathSciNet  Google Scholar 

  22. B. Guo, G. Yuan,On the suitable weak solutions for the Cauchy problem of the Boussinesq equations, Nonlinear Anal.26 no 8 (1996), 1367–1385.

    MATH  MathSciNet  Google Scholar 

  23. R. Hirota,Exact N-soliton solutions of the wave of long waves in shallow-water and in nonlinear lattices, J. Math. Phys.,14 (1973), 810–814.

    Article  MATH  MathSciNet  Google Scholar 

  24. R.S. Johnson,A two-dimensional Boussinesq equation for water waves and some of its solutions, J. Fluid Mech.323 (1996), 65–78.

    Article  MATH  MathSciNet  Google Scholar 

  25. D.J. Korteweg & G. de Vries,On the change of form of long-waves advancing in a rectangular canal, and on a new type of long stationary waves, Phil. Mag.30 no 5 (1895), 422–443.

    Google Scholar 

  26. A. Q. M. Khaliq, B. Abukhodair, Q. Sheng, M. S. Ismail,A Predictor-Corrector Scheme for the sine-Gordon Equation, Numer Methods Partial Differential Eq.16 (2000), 133–146.

    Article  MATH  MathSciNet  Google Scholar 

  27. Jones, L. Kenneth, Y. Chen,Existence of periodic traveling wave solutions to the generalized forced Boussinesq equation, Int. J. Math. Math. Sci.22 no 3 (1999), 643–648.

    Article  MATH  MathSciNet  Google Scholar 

  28. A.I. Kozhanov,An initial-boundary value problem for equations of the generalized Boussinesq equation type with a nonlinear source, Mat. Zametki65 no 1 (1999), 70–75.

    MathSciNet  Google Scholar 

  29. H.P. Langtangen, G. Pedersen,Computational models for weakly dispersive nonlinear water waves, Comput. Methods Appl. Mech. Engrg.160 no 3-4 (1998), 337–358.

    Article  MATH  MathSciNet  Google Scholar 

  30. Y. Li, Q. Chen,Long time behavior of weakly dissipative Schrödinger-Boussinesq equations: global attractors and their dimension, J. Math.16 no 3 (1996), 241–254.

    MATH  MathSciNet  Google Scholar 

  31. Y. Li, Q. Chen,Finite-dimensional global attractor for dissipative Schrödinger-Boussinesq equations, J. Math. Anal. Appl.205 no 1 (1997), 107–132.

    Article  MATH  MathSciNet  Google Scholar 

  32. J.G. Lin, D.H. Qiu,Boussinesq-type equations with first-order nonlinear terms and fourth-order dispersion terms, Acta Mech. Sinica30 no 5 (1998), 531–539.

    MathSciNet  Google Scholar 

  33. P.A. Madsen, H.A. Schaffer,Higher-order Boussinesq-type equations for surface gravity waves: derivation and analysis, R. Soc. Lond. Philos. Trans. Ser. A Math. Phys. Eng. Sci.356 no 1749 (1998), 3123–3184.

    Article  MATH  MathSciNet  Google Scholar 

  34. V. Malbackov,Instability of convective cells and genesis of convective structures of different scale, J. Fluid Mechanics365 (1998), 1–22.

    Article  MATH  MathSciNet  Google Scholar 

  35. V.S. Manoranjan, A.R. Mitchell and J.Li. Morris,Numerical solutions of the Good Boussinesq equation, SIAM J. Sci. Stat. Comput.,5 (1984), 946–957.

    Article  MATH  MathSciNet  Google Scholar 

  36. F. Mattioli,On the Hamiltonian decomposition of the Boussinesq equations in a pair of coupled Korteweg-de Vries equations, Wave Motion28 no 3 (1998), 283–296.

    Article  MATH  MathSciNet  Google Scholar 

  37. E. Minchev and N. Yoshida,Asymptotic behaviour and oscillations of solutions on nonlinear parabolic differential-functional equations, Korean J. Comput. Appl. Math.9 no 2 (2002), 465–474.

    MATH  MathSciNet  Google Scholar 

  38. X. Ren, K.H. Wang, K.R. Jin,Open boundary conditions for obliquely propagating nonlinear shallow-water waves in a wave channel, Comp. Fluids26 no 3 (1997), 269–278.

    Article  MATH  Google Scholar 

  39. G. Schneider,The long wave limit for a Boussinesq equation, SIAM J. Appl. Math.58 no 4 (1998), 1237–1245.

    Article  MATH  MathSciNet  Google Scholar 

  40. A.M. Wazwaz,Constructions of soliton solutions and periodic solutions of the Boussinesq equation by the modified decomposition method, Chaos solitons & Fractals Vol.12 no 8 (2001), 1549–1556.

    Article  MATH  MathSciNet  Google Scholar 

  41. G.B. Whitham, Linear and Nonlinear Waves, New York: Wiley-Interscience 1974.

    MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. S. Ismail.

Additional information

Athanassios Bratsos received his B.Sc. from the University of Athens, Greece and his M.Sc. and Ph.D from Brunel University, England, under the supervision of Prof. E.H. Twizell. Since 1984 he has been at the Technological Educational Institution (T.E.I.) of Athens, Greece, which elected him as a Professor of Mathematics. He is a member of IMACS. His research interests are at the numerical solution of linear/nonlinear partial differential equations.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ismail, M.S., Bratsos, A.G. A predictor-corrector scheme for the numerical solution of the Boussinesq equation. JAMC 13, 11–27 (2003). https://doi.org/10.1007/BF02936071

Download citation

  • Received:

  • Revised:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02936071

AMS Mathematics Subject Classification

Keyword and phrases

Navigation