Skip to main content
Log in

Protein folding, misfolding, and refolding of therapeutic proteins

  • Published:
Biotechnology and Bioprocess Engineering Aims and scope Submit manuscript

Abstract

Substantial progress has been made towards understanding the folding mechanisms of proteins in vitro and in vivo even though the general rules governing such folding events remain unknown. This paper reviews current folding models along with experimental approaches used to elucidate the folding pathways. Protein misfolding is discussed in relation to disease states, such as amyloidosis, and the recent findings on the mechanism of converting normally soluble proteins into amyloid fibrils through the formation of intermediates provide an insight into understanding the pathogenesis of amyloid formation and possible clues for the development of therapeutic treatments. Finally, some commonly adopted refolding strategies developed over the past decade are summarized.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Dobson, C. M. and R. J. Ellis (1998) Protein folding and misfolding inside and outside the cell.EMBO J. 17: 5251–5254.

    Article  CAS  Google Scholar 

  2. Sanger, F. (1952) The arrangement of amino acids in protein.Adv. Protein Chem. 7: 1–67.

    Article  CAS  Google Scholar 

  3. Anfinsen, C. B. (1973) Principles that govern the folding of protein chains.Science 181: 223–230.

    Article  CAS  Google Scholar 

  4. Levinthal, C. (1968) Are there pathways for protein folding?J. Chim. Phys. 65: 44–45.

    Google Scholar 

  5. Kim, P. S. and R. L. Baldwin (1990) Intermediates in the folding reactions of small proteins.Ann. Rev. Biochem. 59: 631–660.

    Article  CAS  Google Scholar 

  6. Karplus, M. and D. L. Weaver (1994) Protein folding dynamics: the diffusion-collision model and experimental data.Protein Sci. 3: 650–668.

    Article  CAS  Google Scholar 

  7. Wetlaufer, D. B. (1990) Nucleation in protein folding— confusion of structure and process.Trends Biochem. Sci. 15: 414–415.

    Article  Google Scholar 

  8. Ptitsyn, O. B. (1995) How the molten globule became.Trends Biochem. Sci. 20: 376–379.

    Article  CAS  Google Scholar 

  9. Kuwajima, K. (1989) The molten globule state as a clue for understanding the folding and cooperativity of globular-protein structure.Proteins: Struct. Funct. Genet. 6: 87–103.

    Article  CAS  Google Scholar 

  10. Harrison, S. C. and R. Durbin (1985) Is there a single pathway for the folding of a polypeptide chain?Proc. Natl. Acad. Sci. USA 82: 4028–4030.

    Article  CAS  Google Scholar 

  11. Huppa, J. B. and H. L. Ploegh (1998) The eS-Sence of-SH in the ER.Cell 92: 145–148.

    Article  CAS  Google Scholar 

  12. Freedman, R. B., T. R. Hirst, and M. F. Tuite (1994) Protein disulfide isomerase: Building bridges in protein folding.Trends Biochem. Sci. 19: 331–336.

    Article  CAS  Google Scholar 

  13. Gilbert, H. F. (1998) Protein disulfide isomerase.Methods Enzymol. 290: 26–50.

    Article  CAS  Google Scholar 

  14. Lyles, M. M. and H. F. Gilbert (1991) Catalysis of the oxidative folding of ribonuclease A by protein disulfide isomerase: dependence of the rate on the composition of the redox buffer.Biochemistry 30: 613–619.

    Article  CAS  Google Scholar 

  15. Creighton, T. E. (1986) Disulfide bonds as probes of protein folding pathways.Methods Enzymol. 131: 83–106.

    Article  CAS  Google Scholar 

  16. Baldwin, R. L. (1989) How does protein folding get started?Trends Biochem. Sci. 163: 291–294.

    Article  Google Scholar 

  17. Hantgan, R. R., G. G. Hammes, and H. A. Scheraga (1974) Pathways of folding of reduced bovine pancreatic ribonuclease.Biochemistry 13: 3421–3431.

    Article  CAS  Google Scholar 

  18. Creighton, T. E. (1977) Conformational restrictions on the pathway of folding and unfolding of the pancreatic trypsin inhibitor.J. Mol. Biol. 113: 275–293.

    Article  CAS  Google Scholar 

  19. Weissman, J. S. and P. S. Kim (1991) Reexamination of the folding of BPTI—predominance of native intermediates.Science 253: 1386–1393.

    Article  CAS  Google Scholar 

  20. Xu, X. B., D. M. Rothwarf, and H. A. Scheraga (1996) Non-random distribution of the one-disulfide intermediates in the regeneration of ribonuclease A.Biochemistry 35: 6406–6417.

    Article  CAS  Google Scholar 

  21. Volles, M. J., X. B. Xu, and H. A. Scheraga (1999) Distribution of disulfide bonds in the two-disulfide intermediates in the regeneration of bovine pancreatic ribonuclease A: Further insights into the folding process.Biochemistry 38: 7284–7293.

    Article  CAS  Google Scholar 

  22. Shin, H.-C. and H. A. Scheraga (2000) Catalysis of the oxidative folding of bovine pancreatic ribonuclease A by protein disulfide isomerase.J. Mol. Biol. 300: 995–1003.

    Article  CAS  Google Scholar 

  23. Shin, H.-C. and H. A. Scheraga (1999) Effect of protein disulfide isomerase on the regeneration of bovine ribonuclease A with dithiothreitol.FEBS Lett. 456: 143–145.

    Article  CAS  Google Scholar 

  24. Dobson, C. M. (1999) Protein misfolding, evolution and disease.Trends Biochem Sci. 24: 329–32.

    Article  CAS  Google Scholar 

  25. Sunde, M. and C. C. F. Blake (1997) The structure of amyloid fibrils by electron microscopy and X-ray diffraction.Adv. Protein Chem. 50: 123–159.

    Article  CAS  Google Scholar 

  26. Prusiner, S. B. (1997) Prion diseases and the BSE crisis.Science 278: 245–251.

    Article  CAS  Google Scholar 

  27. Weissman, C. (1999) Molecular genetics of transmissible spongiform encephalopathies.J. Biol. Chem. 274: 3–6.

    Article  Google Scholar 

  28. Jackson, G. S., I. L. Hosszu, A. Power, A. F. Hill, J. Kenney, H. Saibil, C. J. Craven, J. P. Waltho, A. R. Clarke, and J. Collinge (1999) Reversible conversion of monomeric human prion protein between native and fibrilogenic conformations.Science 283: 1935–1937.

    Article  CAS  Google Scholar 

  29. Kelly, J. W. (1998) The alternative conformations of amyloidogenic proteins and their multi-step assembly pathways.Curr. Opin. Struct. Biol. 8: 101–106.

    Article  CAS  Google Scholar 

  30. Hartley, D. L. and J. F. Kane (1988) Properties of inclusion bodies from recombinantEscherichia coli.Biochem. Soc. Trans. 16: 101–102.

    CAS  Google Scholar 

  31. Marston, F. A. (1986) The purification of eukaryotic polypeptides synthesized inEscherichia coli.Biochem. J. 240: 1–12.

    CAS  Google Scholar 

  32. Kane, J. F. and D. L. Hartley (1991) Properties of recombinant protein-containing inclusion bodies inEscherichia coli.Bioprocess Technol. 12: 121–145.

    CAS  Google Scholar 

  33. Schein, C. (1990) Solubility as a function of protein structure and solvent components.Bio/Technol. 8: 308–317.

    Article  CAS  Google Scholar 

  34. Rudolph, R. and H. Lilie (1996) In vitro folding of inclusion body proteins.FASEB J. 10: 49–56.

    CAS  Google Scholar 

  35. Fischer, B., I. Sumner, and P. Goodenough (1993) Isolation and renaturation of bio-active proteins expressed inEscherichia coli as inclusion bodies.Biotechnol. Bioeng. 41: 3–13.

    Article  CAS  Google Scholar 

  36. Lilie, H., E. Schwarz, and R. Rudolph (1998) Advances in refolding of proteins produced inE. coli.Curr. Opin. Biotechnol. 9: 497–501.

    Article  CAS  Google Scholar 

  37. Wetlaufer, D. B., P. A. Branca, and G.-X. Chen (1987) The oxidative folding of proteins by disulfide plus thiol does not correlate with redox potential.Protein Eng. 2: 141–146.

    Article  Google Scholar 

  38. Rudolph, R. (1990) In: H. Tschesche (ed.).Modern Methods in Protein and Nucleic Acid Research. pp. 149–172, Walter de Gruyter, NY, USA.

    Google Scholar 

  39. Hofmann, A., M. Tai, W. Wong, and C. G. Glabe (1995) A sparse matrix screen to establish initial conditions for protein renaturation.Anal. Biochem. 230: 8–15.

    Article  CAS  Google Scholar 

  40. Brinkmann, U., J. Buchner, and I. Pastan (1992) Independent domain folding of Pseudomonas exotoxin and single-chain immunotoxins: influence of interdomain connections.Proc. Natl. Acad. Sci. USA 89: 3075–3079.

    Article  CAS  Google Scholar 

  41. Buchner, J. and R. Rudolph (1991) Renaturation, purification and characterization of recombinant Fab-fragments produced inEscherichia coli.Bio/Technol. 9: 157–162.

    Article  CAS  Google Scholar 

  42. Cleland, J. L., C. Hedgepeth, and D. I. C. Wang (1992) Polyethylene glycol enhanced refolding of bovine carbonic anhydrase B. Reaction stoichiometry and refolding model.J. Biol. Chem. 267: 13327–13334.

    CAS  Google Scholar 

  43. Cleland, J. L., S. E. Builder, J. R. Swartz, M. Winkler, J. Y. Chang, and D. I. C. Wang (1992) Polyethylene glycol enhanced protein refolding.Bio/Technol. 10: 1013–1019.

    Article  CAS  Google Scholar 

  44. Tandon, S. and P. M. Horwitz (1987) Detergent-assisted refolding of guanidinium chloride-denatured rhodanese. The effects of the concentration and type of detergent.J. Biol. Chem. 262: 4486–4491.

    CAS  Google Scholar 

  45. Smith, D. B. and K. S. Johnson (1988) Single-step purification of polypeptides expressed inEscherichia coli as fusions with glutathione S-transferase.Gene 67: 31–40.

    Article  CAS  Google Scholar 

  46. Lavallie, E., E. A. DiBlasio, S. Kovacic, K. L. Grant, P. F. Schendel, and J. M. McCoy (1993) A thioredoxin gene fusion expression system that circumvents inclusion body formation in theE. coli cytoplasm. R.Bio/Technol. 11: 187–193.

    Article  CAS  Google Scholar 

  47. Shin, N.-K., D.-Y. Kim, C.-S. Shin, M.-S. Hong, J. Lee, and H.-C. Shin (1998) High level production of recombinant human growth hormone inEscherichia coli by a simple recombinant process.J. Biotechnol. 62: 143–151.

    Article  CAS  Google Scholar 

  48. Zhang, Y., D. R. Olsen, K. B. Nguyen, P. S. Olson, E. T. Rhodes, and D. Mascarenhas (1998) Expression of eukaryotic proteins in soluble form inEscherichia coli.Protein Expr. Purif. 12: 159–165.

    Article  CAS  Google Scholar 

  49. Forrer, P. and R. Jaussi (1998) High-level expression of soluble heterologous proteins in the cytoplasm ofEscherichia coli by fusion to the bacteriophage lambda head protein D.Gene 224: 45–52.

    Article  CAS  Google Scholar 

  50. Meyer, D. E. and A. Chilkoti (1999) Purification of recombinant proteins by fusion with thermally-responsive polypeptides.Nature Biotechnol. 17: 1112–1115.

    Article  CAS  Google Scholar 

  51. Nilsson, B., E. Holmgren, S. Josephson, S. Gatenbeck, L. Philipson, and M. Uhlen (1985) Efficient secretion and purification of human insulin-like growth factor I with a gene fusion vector in Staphylococci.Nucleic Acids Res. 13: 1151–1162.

    Article  CAS  Google Scholar 

  52. Bedouelle, H. and P. Duplay (1988) Production in Escherichia coli and one-step purification of bifunctional hybrid proteins which bind maltose. Export of the Klenow polymerase into the periplasmic space.Eur. J. Biochem. 171: 541–549.

    Article  CAS  Google Scholar 

  53. Jeong, K. J. and S. Y. Lee (2000) Secretory production of human leptin inEscherichia coli.Biotechnol. Bioeng. 67: 398–407.

    Article  CAS  Google Scholar 

  54. Baneyx, F. (1999) Recombinant protein expression inEscherichia coli.Curr. Opin. Biotechnol. 10: 411–421.

    Article  CAS  Google Scholar 

  55. Thomas, P. J., B.-H. Qu, and P. L. Pedersen (1995) Defective protein folding as a basis of human disease.Trends Biochem. Sci. 20: 456–459.

    Article  CAS  Google Scholar 

  56. Sarmientos, P., M. Duchesne, P. Denefle, J. Boiziau, N. Fromage, N. Delporte, F. Parker, Y. Lelievre, J.-F. Mayaux, and T. Cartwright (1989) Synthesis and purification of active human tissue plasminogen activator fromEscherichia coli.Bio/Technol. 7: 495–501.

    Article  CAS  Google Scholar 

  57. Kohnert, U., R. Rudolph, J. H. Verheijen, E. J. D. Weening-Verhoeff, A. Stern, U. Opitz, U. Martin, H. Lill, H. Printz, M. Lechner, G.-B. Kresse, P. Buckel, and S. Fischer (1992) Biochemical properties of the kringle 2 and protease domains are maintained in the refolded t-PA deletion variant BM 06.022.Protein Eng. 5: 93–100.

    Article  CAS  Google Scholar 

  58. Yamanishi, K., M. Takahashi, T. Nishida, Y. Ohtono, M. Takano, S. Nakai, and Y. Hirai (1991) Renaturation, purification, and characterization of human truncated macrophage colony-stimulating factor expressed inEscherichia coli.J. Biochem. 109: 404–409.

    CAS  Google Scholar 

  59. Tsuji, T., R. Nakagawa, N. Sugimoto, and K. Fukuhara (1987) Characterization of disulfide bonds in recombinant proteins: Reduced human interleukin 2 in inclusion bodies and its oxidative refolding.Biochemistry 26: 3129–3134.

    Article  CAS  Google Scholar 

  60. van Kimmenade, A., M. W. Bond, J. H. Schumacher, C. Laquoi, and R. A. Kastelein (1988) Expression, renaturation and purification of recombinant human interleukin-4 fromEscherichia coli.Eur. J. Biochem. 173: 109–114.

    Article  Google Scholar 

  61. Ejima, D., M. Watanabe, Y. Sato, M. Date, N. Yamada, and Y. Takahara (1999) High yield refolding and purification process for recombinant human interleukin-6 expressed inEscherichia coli.Biotechnol. Bioeng. 62: 301–310.

    Article  CAS  Google Scholar 

  62. Hodges, D. J., D. G. Reid, A. D. Rowan, I. M. Clark, and T. E. Cawston (1998) Preparation of recombinant tissue inhibitor of metalloproteinases-1 (TIMP-1) in high yield and identification of a hydrophobic surface feature.Eur. J. Biochem. 257: 562–569.

    Article  CAS  Google Scholar 

  63. Williamson, R. A., D. Natalia, C. K. Gee, G. Murphy, M. D. Carr, and R. B. Freedman (1996) Chemically and conformationally authentic active domain of human tissue inhibitor of metalloproteinases-2 refolded from bacterial inclusion bodies.Eur. J. Biochem. 241: 476–483.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hang-Cheol Shin.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Shin, HC. Protein folding, misfolding, and refolding of therapeutic proteins. Biotechnol. Bioprocess Eng. 6, 237–243 (2001). https://doi.org/10.1007/BF02931984

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02931984

Keywords

Navigation