Skip to main content
Log in

Toxicity monitoring of endocrine disrupting chemicals (EDCs) using freeze-dried recombinant bioluminescent bacteria

  • Published:
Biotechnology and Bioprocess Engineering Aims and scope Submit manuscript

Abstract

Five different freeze-dried recombinant bioluminescent bacteria were used for the detection of cellular stresses caused by endocrine disrupting chemicals. These strains were DPD2794 (recA::luxCDABE), which is sensitive to DNA damage, DPD2540 (fabA::luxCDABE), sensitive to cellular membrane damage, DPD2511 (katG::luxCDABE), sensitive to oxidative damage, and TV1061 (grpE::luxCDABE), sensitive to protein damage. GC2, which emits bioluminescence constitutively, was also used in this study. The toxicity of several chemicals was determined on the first four freeze-dried bacteria, while nonspecific cellular stresses were measured using GC2. Damage caused by known endocrine disrupting chemicals, such as nonyl phenol, bisphenol A, and styrene, was detected and classified according to toxicity mode, while others, such as phathalate and DDT, were not detected with the bacteria. These results suggest that endocrine disrupting chemicals are toxic in bacteria, and do not act via an estrogenic effect, and that toxicity monitoring and classification of some endocrine disrupting chemicals may be possible in the field using these freeze-dried recombinant bioluminescent bacteria.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Jimenez, B. (1997) Environmental effects of endocrine disruptors and current Methodologies for assessing wildlife health effects.Trends Anal. Chem. 16:596–606.

    Article  CAS  Google Scholar 

  2. Jobling, S. (1998) Natural and anthropogenic environmental oestrogens: the scientific basis for risk assessment.Pare Appl. Chem. 70:1805–1827.

    Article  CAS  Google Scholar 

  3. Omownumi, A. S., and M. W. Diane (1999) Novel Monitoring Strtegies for Endocrine Disrupting Chemicals.Environ. Sci. Technol 33:368A-374A.

    Google Scholar 

  4. Min, J., E. J. Kim, R. A. LaRossa, and M. B. Gu (1999) Distinct responses of arecA::luxCDABE Escherichia coli strain to direct and indirect DNA damaging agents.Mut. Res. 442:61–68.

    CAS  Google Scholar 

  5. Burcham, P. C. (1999) Internal hazards: baseline DNA damage by endogenous products of normal metabolism.Mut. Res. 443:11–36.

    CAS  Google Scholar 

  6. Schweikl, H., G. Schmalz, and K. Rackebrandt (1998) The mutagenic activity of unpolymerized resin monomers inSalmonella typhimurium and V79 cellsMat. Res. 415:119–130.

    CAS  Google Scholar 

  7. Vollmer, A. C., S. Belkin, D. R. Smulski, T. K. Van dyk, and R. A. LaRossa (1997) Detection of DNA damage by use ofEscherichia coli carryingrecA::lux, uvrA::lux, oralkA::lux reporter plasmids.Appl. Environ. Microbiol. 63: 2566–2571.

    CAS  Google Scholar 

  8. van Dyk, T. K., D. R. Smulski, T. R. Reed, S. Belkin, A. C. Vollmer, and R. A. LaRossa (1995) Responses to toxicants of anEscherichia coli strain carrying auspA'::lux genetic fusion and anE. coli strain carrying agrpE'::lux fusion are similar.Appl. Environ. Microbiol. 61:4124–4127.

    Google Scholar 

  9. Belkin, S., D. R. Smulski, A. C. Vollmer, T. K. Van dyk, and R. A. LaRossa (1996) Oxidative stress detection withEscherichia coli harboring akatG'::lux fusion.Appl. Environ. Microbiol. 62:2252–2256.

    CAS  Google Scholar 

  10. Gil, G. C., R. J. Mitchell, S. T. Chang, and M. B. Gu (2000) A biosensor for the detection of gas toxicity using a recombinant bioluminescent bacterium.Biosens. Bioelectron 15:22–30.

    Google Scholar 

  11. Marincs, E. and D. W. R. White (1994) Immobilization ofEscherichia coli expressing thelux genes ofXenorhabdus luminescens.Appl. Environ. Microbiol. 60:3862–3863.

    CAS  Google Scholar 

  12. Cho, C. O. (1991)Advanced Molecular Biology. pp. 34–50. The Science of Art Press, Seoul, Korea.

    Google Scholar 

  13. Choi, S. H., and M. B. Gu (2000) Enhancement in the viability and biosensing activity of freeze-dried recombinant bioluminescent bacteria.Biotechnol. Bioprocess Eng. 5:202–206.

    Article  CAS  Google Scholar 

  14. Gu, M. B., J. Min, and R. A. LaRossa (1999) Bacterial bioluminescent emission from recombinantEscherichia coli harboring arecA::luxCDABE fusion.J. Biochem. Biophys. Methods. 45:45–56.

    Article  Google Scholar 

  15. Choi, S. H., and M. B. Gu (1999) A whole cell bioluminescent biosensor for the detection of membrane-damaging toxicity.Biotechnol. Bioprocess Eng. 4:59–62.

    Article  CAS  Google Scholar 

  16. van Dyk, T. K., D. R. Smulski, T. R. Reed, S. Belkin, A. C. Vollmer, and R. A. LaRossa (1995) Responses to toxicants of anEscherichia coli strain carrying auspA'::lux genetie fusion and anE. coli strain carrying agrpE'::lux fusion are similar.Appl. Environ. Microbiol. 61:4124–4127.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Man Bock Gu.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kim, S.W., Choi, S.H., Min, J. et al. Toxicity monitoring of endocrine disrupting chemicals (EDCs) using freeze-dried recombinant bioluminescent bacteria. Biotechnol. Bioprocess Eng. 5, 395–399 (2000). https://doi.org/10.1007/BF02931937

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02931937

Keywords

Navigation