Skip to main content
Log in

Enhanced glucose production from cellulose using coimmobilized cellulase and β-glucosidase

Applied Biochemistry and Biotechnology Aims and scope Submit manuscript

Abstract

β-Glucosidase was covalently immobilized alone and coimmobilized with cellulase using a hydrophilic polyurethane foam (Hypol®FHP 2002). Immobilization improved the functional properties of the enzymes. When immobilized alone, the Km for cellobiose of β-glucosidase was decreased by 33% and the pH optimum shifted to a slightly more basic value, compared to the free enzyme. Immobilized β-glucosidase was extremely stable (95% of activity remained after 1000 h of continuous use). Coimmobilization of cellulase and β-glucosidase produced a cellulose-hydrolyzing complex with a 2.5-fold greater rate of glucose production for soluble cellulose and a four-fold greater increase for insoluble cellulose, compared to immobilized cellulase alone. The immobilized enzymes showed a broader acceptance of various types of insoluble cellulose substrates than did the free enzymes and showed a long-term (at least 24 h) linear rate of glucose production from microcrystalline cellulose. The pH optimum for the coimmobilized enzymes was 6.0. This method for enzyme immobilization is fast, irreversible, and does not require harsh conditions. The enhanced glucose yields obtained indicate that this method may prove useful for commercial cellulose hydrolysis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Sundstrom, D., Klei, H., Coughlin, R., Biederman, G., andBrouwer C. (1981),Biotechnol. Bioengin. 23, 473.

    Article  CAS  Google Scholar 

  2. Emsley, J. (1987),New Scientist 39, October 8.

    Google Scholar 

  3. Knowles, J., Lehtovaara, P., and Teeri, T. (1987),Trends Biotechnol. 5, 255.

    Article  CAS  Google Scholar 

  4. Klyosov, A. (1986),Appl. Biochem. Biotechnol. 12, 249.

    Article  Google Scholar 

  5. Matteau, P. and Saddler, J. (1982),Biotechnol. Lett. 4, 513.

    Article  CAS  Google Scholar 

  6. Srinivasan, V. and Bumm, W. (1974),Biotechnol. Bioengin. 16, 1413.

    Article  CAS  Google Scholar 

  7. Kumakura, M. and Kaetsu, I. (1982),Biosci. Reports 4, 181.

    Article  Google Scholar 

  8. Drioli, E., Iorio, G., Santoro, R., De Rosa, M., Gambacorta, A., and Nichlaus, B. (1982),J. Mol. Catal. 14, 247.

    Article  CAS  Google Scholar 

  9. Chakrabarti, A. and Storey, K. B. (1988),Appl. Biochem. Biotechnol. 19, 189.

    Article  CAS  Google Scholar 

  10. Lowry, O. H. and Passonneau, J. V. (1972),A Flexible System of Enzymatic Analysis, Academic Press, NY.

    Google Scholar 

  11. Atha, D. H. and Ingham, K. C. (1981),J. Biol. Chem. 256, 12108.

    CAS  Google Scholar 

  12. Montenecourt, B. S. (1983),Trends Biotechnol. 1, 156.

    Article  CAS  Google Scholar 

  13. Sternberg, D., Vijayakumar, P., and Reese, E. (1977),Can. J. Microbiol. 23 139.

    Article  CAS  Google Scholar 

  14. Ward, O. (1985),Comprehensive Biotechnology, vol. 3, Moo-Young, M., ed., Pergamon, Oxford, UK.

    Google Scholar 

  15. Tan, L. U. L., Yu, E. K. C, Louis-Seize, G. W., and Saddler, J. N. (1986),Appl. Microb. Biotechnol. 25, 250.

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Chakrabarti, A.C., Storey, K.B. Enhanced glucose production from cellulose using coimmobilized cellulase and β-glucosidase. Appl Biochem Biotechnol 22, 263–278 (1989). https://doi.org/10.1007/BF02921761

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02921761

Index Entries

Navigation