Skip to main content
Log in

Abstract

Cellulase was covalently immobilized using a hydrophilic polyurethane foam (Hypol®FHP 2002). Compared to the free enzyme, immobilized cellulase showed a dramatic decrease (7.5-fold) in the Michaelis constant for carboxymethylcellulose. The immobilized enzyme also had a broader and more basic pH optimum (pH 5.5–6.0), a greater stability under heat-denaturing or liquid nitrogen-freezing conditions, and was relatively more efficient in utilizing insoluble cellulose substrates. High molecular weight compounds (Blue Dextran) could move throughout the foam matrix, indicating permeability to insoluble celluloses; activity could be further improved 2.4-fold after powdering, foams under liquid nitrogen. The improved kinetic and stability features of the immobilized cellulase combined with advantageous properties of the polyurethane foam (resistance to enzymatic degradation, plasticity of shape and size) suggest that this mechanism of cellulase immobilization has high potential for application in the industrial degradation of celluloses.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Emsley, J. (1987),New Scientist 39, October 8.

  2. Cheetham, P. S. J. (1985), inHandbook of Enzyme Biotechnology, 2nd ed. (A. Wiseman, ed.), Harwood, UK.

    Google Scholar 

  3. Tjerneld, F., Persson, I., Albertsson, P.-A., and Hahn-Hagerdal, B. (1985),Biotechnol. Bioeng. 27, 1044.

    Article  CAS  Google Scholar 

  4. Fadda, M. B., Dessi, M. R., Maurici, R., Rinaldi, A., and Satta, G. (1984),Appl. Microbiol. Biotechnol. 19, 306.

    Article  Google Scholar 

  5. Drioli, E., Iorio, G., Santoro, R., De Rosa, M., Gambacorta, A., and Nichlaus, B. (1982),J. Mol. Catal. 14, 247.

    Article  CAS  Google Scholar 

  6. Kumakura, M. and Kaetsu, I. (1982),Biosci. Reports 4, 181.

    Article  Google Scholar 

  7. Lowry, O. H. and Passonneau, J. V. (1972),A Flexible System of Enzymatic Analysis, Academic, NY.

    Google Scholar 

  8. Atha, D. H. and Ingham, K. C. (1981),J. Biol. Chem. 256, 12108.

    CAS  Google Scholar 

  9. Kumakura, M. and Kaetsu, I. (1983),Helv. Chim. Acta. 66, 2778.

    Article  CAS  Google Scholar 

  10. Klyosov, A.A. (1986),Appl. Biochem. Biotech. 12, 249.

    Article  Google Scholar 

  11. Woodward, J. and Zachary, G. S. (1982),Enzyme Microb. Technol. 4, 245.

    Article  CAS  Google Scholar 

  12. Ryu, D. D. Y., Kim, C., and Mandels, M. (1984),Biotechnol. Bioeng. 26, 488.

    Article  CAS  Google Scholar 

  13. Puri, V. P. (1984),Biotechnol. Bioeng. 26, 1219.

    Article  CAS  Google Scholar 

  14. Henrissat, B., Driguez, H., Viet, C., and Schulein, M. (1985),Bio/Technology 3, 722.

    Article  CAS  Google Scholar 

  15. Pitcher, W. H. (1980), inImmobilized Enzymes for Food Processing (W. H. Pitcher, Jr., ed.), CRC Press, Cleveland, OH.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Chakrabarti, A.C., Storey, K.B. Immobilization of cellulase using polyurethane foam. Appl Biochem Biotechnol 19, 189–207 (1988). https://doi.org/10.1007/BF02921483

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02921483

Index Entries

Navigation