Skip to main content
Log in

Expression analysis ofgdcsP promoter from C3-C4 intermediate plantFlaveria anomala in transgenic rice

  • Notes
  • Published:
Chinese Science Bulletin

Abstract

ThegdcsP promoter isolated from C3-C4 intermediate plantFlaveria anomala was fused to the β-glucuronidase (GUS) gene. The chimeric gene was inserted into the binary vector pBin19 and introduced into the rice (Oryza sativa L.) cv. 8706 byAgrobacteriummediated gene transfer. GUS activity can be detected in leaf, leaf sheath, stem and root tissues via fluorometric GUS assay. However, no GUS activity was found in mature endosperm. Histochemical localization revealed that GUS expression was exclusively restricted to vascular tissues in transgenic plants. This promoter also showed spatial-temporal expression patterns that GUS expression declined significantly with the maturity of plants. These expression patterns make thegdcsP promoter extremely valuable in the applied biotechnology that needs target gene expression restricted to vascular tissues.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Shirsat, A., Wilford, N., Cory, R. et al., Sequences responsible for the tissue specific promoter activity of a pea legumin gene in tobacco, Mol. Gen. Genet., 1989, 215: 326.

    Article  Google Scholar 

  2. Schernthaner, J. P., Matzke, M. A., Matzke, A. J. M., Endosperm-specific activity of a zein gene promoter in transgenic tobacco plants, EMBO J., 1988, 7: 1249.

    Google Scholar 

  3. Wakeley, P. R., Rogers, H. J., Rozycka, M. et al., A maize pectin methylesterase-like gene, ZmC5, specifically expressed in pollen, Plant Mol. Biol., 1998, 37: 187.

    Article  Google Scholar 

  4. Deikman, J., Fischer, R. L., Interaction of a DNA binding factor with the 5′-flanking region of an ethylene-responsive fruit ripening gene from tomato, EMBO J., 1988, 7: 3315.

    Google Scholar 

  5. Rocha-Sosa, M., Sonnewald, U., Frommer, W. et al., Both developmental and metabolic signals activate the promoter of a class 1 patatin gene, EMBO J., 1989, 8: 23.

    Google Scholar 

  6. Fluhr, R., Kuhlemeier, C., Nagy, F. et al., Organ-specific and light-induced expression of plant genes, Science, 1986, 232: 1106.

    Article  Google Scholar 

  7. Yamamoto, Y. T., Taylor, C. G., Acedo, G. N. et al., Characterization ofcis-acting sequences regulating root-specific gene expression in tobacco, Plant Cell, 1991, 3: 371.

    Article  Google Scholar 

  8. Hylton, C. M., Rawsthorne, S., Smith, A. M. et al., Glycine decarboxylase is confined to the bundle sheath cells of leaves of C3-C4 intermediate species, Planta, 1988, 175: 452.

    Article  Google Scholar 

  9. Rawsthorne, S., C3-C4 intermediate photosynthesis-linking physiology to gene expression, Plant J., 1992, 2: 267.

    Article  Google Scholar 

  10. Devi, M. T., Rajagopalan, A. V., Rajhavendra, A. S., Predominant localization of mitochondria enriched with glycine-decarboxylating enzymes in bundle sheath cells ofAlternanthera tenella, a C3-C4 intermediate species, Plant Cell Environ., 1995, 18: 589.

    Article  Google Scholar 

  11. Morgan, C. L., Turner, S. R., Rawsthorne, S., Coordination of the cell-specific distribution of the four subunits of glycine decarboxylase and of serine hydroxymethyltransferase in leaves of C3-C4 intermediate species from different genera, Planta, 1993, 190: 468.

    Article  Google Scholar 

  12. Edwards, G. E., Ku, M. S. B., Biochemistry of C3-C4 intermediates, in The Biochemistry of Plants. A Comprehensive Treatise (eds. Hatch, M. D., Boardman, N. K.), New York: Academic Press, 1987, 275.

    Google Scholar 

  13. Rawsthrone, S., Douce, R., Oliver, D. J., The glycine decarboxylase complex in higher plant mitochondria: structure, function and biogenesis, in Amino Acids and Their Derivatives in Higher Plants, ed. Wallsgrove, R. W., London: Cambridge University Press, 1994, 87.

    Google Scholar 

  14. Hiei, Y., Ohta, S., Komari, T. et al., Efficient transformation of rice (Oryza sativa L.) mediated byAgrobacterium and sequence analysis of the boundaries of the T-DNA, Plant J., 1994, 6: 271.

    Article  Google Scholar 

  15. Dellaporta, S. L., Wood, J., Hicks, J. B., A rapid method for DNA extraction from plant tissue, Plant Mol. Biol. Rep., 1983, 1: 19.

    Article  Google Scholar 

  16. Sambrook, J., Fritsch, E. F., Maniatis, T., Molecular Cloning, 2nd ed., New York: Cold Spring Harbor Laboratory Press, 1989.

    Google Scholar 

  17. Church, G. M., Gilbert, W., Genomic sequencing, Proc. Nat. Acad. Sci. USA, 1984, 81: 1991.

    Article  Google Scholar 

  18. Jefferson, R. D., Kavanagh, T. A., Bevan, M. W., GUS fusion: beta-glucuronidase as a sensitive and versatile gene fusion marker in higher plants, EMBO J., 1987, 6: 3901.

    Google Scholar 

  19. Chu, C. C., Molecular Structure and Expression Patterns of Glycine Decarboxylase Genes fromFlaveria pringlei (C3) andFlaveria anomala (C3-C4), Dissertation, Martin-Luther University, Halle-Wettenberg, 1996, 1.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Chengcai Chu.

About this article

Cite this article

Chen, S., Qu, N., Cao, S. et al. Expression analysis ofgdcsP promoter from C3-C4 intermediate plantFlaveria anomala in transgenic rice. Chin.Sci.Bull. 46, 1635–1638 (2001). https://doi.org/10.1007/BF02900624

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02900624

Keywords

Navigation