Skip to main content
Log in

Application of the empirical characteristic function to compare and estimate densities by pooling information

  • Published:
Computational Statistics Aims and scope Submit manuscript

Summary

Independent measurements are taken from distinct populations which may differ in mean, variance and in shape, for instance in the number of modes and the heaviness of the tails. Our goal is to characterize differences between these different populations. To avoid pre-judging the nature of the heterogeneity, for instance by assuming a parametric form, and to reduce the loss of information by calculating summary statistics, the observations are transformed to the empirical characteristic function (ECF). An eigen decomposition is applied to the ECFs to represent the populations as points in a low dimensional space and the choice of optimal dimension is made by minimising a mean square error. Interpretation of these plots is naturally provided by the corresponding density estimate obtained by inverting the ECF projected on the reduced dimension space. Some simulated examples indicate the promise of the technique and an application to the growth of Mirabilis plants is given.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8
Figure 9
Figure 10
Figure 11
Figure 12

Similar content being viewed by others

References

  • Barry J., and Diggle P. (1995). Choosing the smoothing parameter in a Fourier approach to nonparametric deconvolution of a density estimate.Nonparametric Statistics,4, 223–232.

    Article  MathSciNet  Google Scholar 

  • Besse, P., Caussinus, H., Ferré, L., Fine, J. (1986). Principal component analysis and optimisation of graphical displays.Statistics,19, 2, 301–312.

    Article  Google Scholar 

  • Besse, P., and Ramsay, J. (1986). Principal component analysis of sample functions.Psychometrika,51, 285–311.

    Article  MathSciNet  Google Scholar 

  • Boularan, J., Ferré, L., and Vieu, P. (1995). Growth curves: a two stage nonparametric approach.J. Statistical Planning Inference,38, 327–350.

    Article  MathSciNet  Google Scholar 

  • Cardot, H., Ferraty. F and Sarda, P. (1999). Functional linear model.Statist.Probab.Let.,45, 11–22.

    Article  MathSciNet  Google Scholar 

  • Caussinus, H., and Ferré, L. (1989). Analyse an composantes principales d’individus définis par les paramètres d’un modèle.Statistique et Analyse des Donnees,14, 3, 19–28.

    Google Scholar 

  • Caussinus, H., and Ferré, L. (1992). Comparing the parameters of a model for several units by means of principal components analysis.Comp. Stat. Data Anal,13, 269–280.

    Article  Google Scholar 

  • Chiu, S.T. (1991). Bandwidth selection for kernel density estimation.Ann. Statist,4, 1883–1905.

    Article  MathSciNet  Google Scholar 

  • Chiu, S.T. (1996). A comparative review of bandwidth selection for kernel density estimation.Statistica Sinica,6, 129–145.

    MathSciNet  MATH  Google Scholar 

  • Csorgo, S. (1981). Limit behavior of the empirical characteristic function.Ann. Prob.,9, 130–144.

    Article  Google Scholar 

  • Csorgo, S. (1985). Rates of the uniform convergence for the empirical characteristic function.Acta Sci. Math.,48, 97–102.

    MathSciNet  MATH  Google Scholar 

  • Diggle, P., and Hall, P. (1993). A Fourier approach to nonparametric deconvolution of a density estimate.J. R. Statist. Soc. B,55, 2, 523–531.

    MathSciNet  MATH  Google Scholar 

  • Ferraty, F., and Vieu, P. (2002). The functional nonparametric model and application to spectrometric data.Computational Statistics, to be published.

  • Ferré, L., and Yao, A.F. (2000). Functional sliced inverse regression analysis. Preprint. Pub. Lab. Stat. Prob. Toulouse, LSP-2000–14.

  • Ferré, L. (1989). Choix de la dimension de représentation optimale pour certains types d’analyses en composantes principales.C.R. Acad. Sc. Paris,309, Serie I, 959–964.

    MathSciNet  MATH  Google Scholar 

  • Ferre, L. (1995). Improvement of some multivariate estimates by reduction of the dimensionality.J. Mult. Analysis, 54, 147–162.

    Article  MathSciNet  Google Scholar 

  • Feuerverger, A., and Mureika, R.A. (1977). The empirical characteristic function and its applications.Ann. Statist.,5, 1, 88–97.

    Article  MathSciNet  Google Scholar 

  • Fine, J. (1987). On the validity of the perturbation method in asymptotic theory.Statistics,3, 401–414.

    Article  MathSciNet  Google Scholar 

  • Gasser, T., and Kneip, A. (1991). Analysis of sample curves. InNonparametric Functional Estimation and Related Topics, (Ed. G. G. Roussas), Dordrecht: Kluwer, pp99–110.

    Chapter  Google Scholar 

  • Jones, M.C., and Rice, J. (1992). Displaying the important features of large collections of similar curves.Amer. Statist.,46, 140–5.

    Google Scholar 

  • Kneip A., and Utikal K.J. (2001). Inference for density families using functional principal component analysis. J. Am. Statist. Ass.,96, N 454, 519–532.

    Article  MathSciNet  Google Scholar 

  • Mahiedine, A. (1993).Estimation de la fonction charactéristique. PhD Thesis, Universite de Paris VI, Paris, France.

    Google Scholar 

  • Préda, C, and Saporta, G. (2000). Régression PLS sur un processus stochastique.Pub. IRMA, Lille 2000,40, VII.

    Google Scholar 

  • Ramsay, J.O., and Silverman, B.W. (1997).Functional Data Analysis. Berlin: Springer.

    Book  Google Scholar 

  • Silverman, B.W., and Rice, J. (1991). Estimating the mean and covariance structure when data are curves.J. R. Statist. Soc. B,53, 223–243.

    MathSciNet  MATH  Google Scholar 

  • Zhang, C.H. (1990). Fourier methods for estimating mixing densities and distributions.Ann. Math. Statist,39, 1289–1302.

    Google Scholar 

Download references

Acknowledgement

we are grateful to an Associate Editor and the referees for comments which have substantially improved this paper.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to L. Ferré or J. Whittaker.

Appendices

A APPENDIX: The expression for the MSE

Recall from the definitions given in Section 2 above that m is the ECF, the super-script mc denotes the centered version, the tilde \(\tilde{m}\) denotes the version standardized by the variance matrix. We suppose that ni and n grow at the rate. From (4) and the strong law of large numbers we have the a.s. expansion \(\tilde{m}_i(t)=\psi_i(t)+n^{-\frac{1}{2}}e_i\) with error \(e_i=O(\sqrt{{\rm{lnln}}n})\).

We can express (7) by

$$\begin{array}{*{20}{c}} {M = \sum\limits_{i - 1}^N {\frac{{{n_i}}}{n}\tilde m_i^c(t)\tilde m_i^c(t)' = \sum\limits_{i = 1}^N {\frac{{{n_i}}}{n}\psi _i^c(t)\psi _i^c(t)'\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;} } } \\ { + \;\;{n^{ - \tfrac{1}{2}}}\sum\limits_{i = 1}^N {\frac{{{n_i}}}{n}\left\{ {\psi _i^c(t)e_i^{c'} + e_i^c\psi _i^c(t)'} \right\} + {n^{ - 1}}\sum\limits_{i = 1}^N {\frac{{{n_i}}}{n}e_i^ce_i^{c'}} } } \\ { = \Psi + {n^{ - \tfrac{1}{2}}}{T_1} + {n^{ - 1}}{T_2},\;say\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;} \end{array}$$
(13)

Equation (13) allows the use of the perturbation theory for linear operators for non-analytic perturbations (for an exposition see Fine, 1987) and leads to expressions for the eigen elements of M as a function of those of Ψ where \(\Psi=\sum\nolimits_{i=1}^N\frac{n_i}{n}\psi_i^c(t)\psi_i^c(t)'\). Denote by λj the eigen values ofΨ ranged in decreasing order and assumed to be distinct, and by Pj the orthogonal eigen projector associated with λj; correspondingly \(\widehat{\lambda}_j\) and \(\widehat{P}_j\) denote the eigen value and projections of M.

We have the following a.s. expansions: for j = 1 to p,

$$\widehat{\lambda}_j=\lambda_j+n^{-1}{\rm{tr}}(T_1P_j)+n^{-2}{\rm{tr}}(T_2P_j-T_1[\Psi-\lambda_jI_p]^-T_1P_j)+O(n^{-3/2})$$
(14)

and

$$\widehat{P}_j=P_j+n^{-\frac{1}{2}}P_j^1+n^{-1}P_j^2+O(n^{-\frac{3}{2}}), {\rm{say}}$$
(15)

where

$$P_j^1=[\Psi-\lambda_jI_p]^-T_1P_j+P_jT_1[\Psi-\lambda_jI_p]^-,$$
(16)
$$P_j^2=[\Psi-\lambda_jI_p]^-T_2P_j+P_jT_2\Psi-\lambda_jI_p]^--P_jT_1[\Psi-\lambda_jI_p]^{-2}T_1P_j-[\Psi-\lambda_jI_p]^{-2}T_1P_jT_1P_j-P_jT_1P_jT_1[\Psi-\lambda_jI_p]^{-2}+P_jT_1[\Psi-\lambda_jI_p]^-T_1[\Psi-\lambda_jI_p]^-+[\Psi - \lambda_jI_p]^-T_1[\Psi-\lambda_jI_p]^-T_1P_j+[\Psi-\lambda_jI_p]^-T_1P_jT_1[\Psi-\lambda_jI_p]^-,$$
(17)

and where [A] denotes the Moore Penrose generalized inverse of A.

Consequently

$$\widehat{\psi}_i^l(t)-\psi_i(t) = \sum_{j=l+1}^p P_j\psi_i^c(t)+n^{-\frac{1}{2}}\sum_{k=1}^l(P_k^1\psi_i^c(t)+P_k^1e_i^c)+n^{-1}\sum_{k=1}^lP_k^2\psi_i^c(t)$$
(18)

Now, for l = 1, …, p,

$$MSE_l = E\sum_{i=1}^N\frac{n_i}{n}\{\widehat{\psi}_i^l(t) - \psi_i(t)\}'\{\widehat{\psi}_i^l(t)-\psi_i(t)\}.$$
(19)

At the price of simple, but tedious, calculations using equations (14) to (18)

$$E\sum_{i=1}^N\frac{n_i}{n}\left\{ \sum_{j=l+1}^p P_j\psi_i^c(t) \right\}' \left\{ \sum_{j=l+1}^p P_j\psi_i^c(t) \right\} = {\rm{tr}} \left\{ \sum_{i=1}^N \frac{n_i}{n} \sum_{j=l+1}^p P_j\psi_i^c(t)\psi_i^c(t)' \right\} = \sum_{j=l+1}^p \lambda_j.$$
(20)

Furthermore

$$[\Psi-\lambda_jI_p]^-=\sum_{k=1, k \neq j}^p \frac{1}{\lambda_k-\lambda_j}P_k$$
(21)

and

$$\Psi[\Psi-\lambda_jI_p]^-=[\Psi-\lambda_jI_p]^-\Psi=I-P_j+\lambda_j[\Psi-\lambda_jI_p]^-.$$
(22)

For any Hermitian matrices A and B and for any centred random matrix U,

$$E\{{\rm{tr}}(AU BU)\} = {\rm{tr}}\{(B \otimes A)E{\rm{vec}}(U){\rm{vec}}(U)'\}={\rm{tr}}\{(B \otimes A) {\rm{var}}({\rm{vec}}(U))\}$$

where ⊗ here denotes the Kronecker product of matrices. When expanding MSEl, this property is applied to A = Pk and B = Pj, for kj, and to \(U=\psi_i^c(t)e_i^c(t)' + e_i^c(t)\psi_i^c(t)'\) . Note also

$$Ee_i^c(t)e_i^c(t)' = (\frac{n}{n_i}-1)I_p, \;\;\;{\rm{and}} \\2\sum_{j=1}^l\sum_{k=1}^p\frac{\lambda_j}{\lambda_k-\lambda_j} = -l(l-1)+2\sum_{j=1}^l\sum_{k=l+1}^p\frac{\lambda_j}{\lambda_k-\lambda_j}.$$

Finally the following result is obtained

$$MSE_l = \sum_{j=l+1}^p\lambda_j+n^{-1}\left( l(n - p+l)+p-l-2\sum_{j=1}^l\sum_{k=l+1}^p\frac{\lambda_j}{\lambda_k-\lambda_j}\right)+O(n^{-3/2}).$$

The estimator the unknown parameters by their estimates and by taking into account the bias of the estimators of the eigen values given by:

$$E\sum_{j=l+1}^p\widehat{\lambda}_j=\sum_{j=l+1}^p\lambda_j \;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\ \\ \;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;+n^{-1} \left( np-(p-l)-l(n-p+l)+2\sum_{j=1}^l \sum_{k=l+1}^p\frac{\lambda_j}{\lambda_k-\lambda_j} \right)+O(n^{-3/2}).$$

Finally it follows that

$$E(\widehat{MSE}_l)=MSE_l+O(n^{-3/2}) \;\;\; {\rm{and}}$$
(23)
$${\rm{var}}(\widehat{MSE}_l)=4n^{-1}\sum_{j=l+1}^p \lambda_j+O(n^{-3/2}).$$
(24)

B APPENDIX: The parameters of the mixture example

The mixtures in the simulation example of Section 3.3 have no more than 3 components. They are defined by the 3 means, standard deviations, and mixture probabilities.

Table 2

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ferré, L., Whittaker, J. Application of the empirical characteristic function to compare and estimate densities by pooling information. Computational Statistics 19, 169–192 (2004). https://doi.org/10.1007/BF02892055

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02892055

Keywords

Navigation